# Teaching approaches: Investigation

- Active learning
- Applying and consolidating
- Argumentation
- Assessment
- Classroom management
- Collaboration
- Curriculum development
- Curriculum planning
- Dialogue
- Differentiation
- Discussion
- Drama
- Exploring and noticing structure
- Games
- Group talk
- Group work
- Higher order
- Homework
- Inclusion
- Inquiry
- Introduction
- Investigation
- Language
- Learning objectives
- Mathematical thinking
- Modelling
- Narrative
- Open ended
- Planning
- Planning for interactive pedagogy
- Planning for professional development
- Posing questions and making conjectures
- Questioning
- Reasoning
- Reasoning, justifying, convincing and proof
- Scientific method
- Sharing practice
- The ORBIT Resources
- Thinking strategically
- Visualisation
- Visualising and explaining
- Whole class
- Working systematically

Investigations engage pupils in active learning to explore a particular topic or problem. Investigations may be related to enquiry based learning, and sometimes used synonymously, but we would normally consider enquiry based learning more open ended, involving higher order reasoning and perhaps high level dialogue in group work contexts, where in investigations such group talk might be more closely directed by the teacher.

# Relevant resources

Biodiversity | Using Science to Support Biodiversity | |

A virtual field trip to study biodiversity. This is an investigation^{(ta)} in a virtual field trip to Dartmoor National Park. It involves research, designing a scientific investigation and analysing the results.
| ||

Graph | Variation of human characteristics - Visualising Class data | |

A big survey of ourselves, measuring hands, feet and more The lesson offers the opportunity to explore measurement, relationships between measurement, and ways to visualise and summarise this data. The use of ICT^{(i)} allows the teacher to enter data and for pupils to immediately see the impact this has on the pie chart and frequency tables (which are automatically updated). This also allows the teacher to change the 'range' for the frequency counts, and discuss with pupils the impact of this on the pie chart, and whether this is a good representation - encouraging the use of mathematical language^{(ta)} and scientific method^{(ta)} throughout. In collecting the data pupils have opportunity for some self-directed group work^{(ta)} - to measure various lengths as described below - and the teacher could use whole class^{(ta)} questions^{(ta)} to explore the strategies taken to conduct this investigation^{(ta)}.
| ||

Investigation | Consecutive Sums | |

Can all numbers be made in this way? For example 9=2+3+4, 11=5+6, 12=3+4+5, 20=2+3+4+5+6 By definition, a problem is something that you do not immediately know how to solve, so learning how to solve something unfamiliar is not straightforward. Tackling an extended problem is difficult.
This lesson gives pupils an opportunity to engage in mathematical thinking The plan suggests several visualisation | ||

Investigation | Persuasive argument and evidence-based conclusions about the best car | |

Got a new motor? Talk about your investigation like a scientist This activity involving inquiry^{(ta)}aims to develop children’s ability to support their conclusions with evidence. The teacher will model^{(ta)} and encourage the use of the language^{(ta)} that children require to discuss or present their data. The teacher can explain their rationale using the lesson below.
| ||

Standard Index Form | An Introduction to the Standard Index Form | |

Working out the rules according to which a calculator displays large numbers The Standard Index Form is a key idea for mathematicians and scientists. The notion that we choose to write numbers in this way requires some explanation. So in this activity, pupils take part in an investigation^{(ta)} on how standard index form works. This is a higher order^{(ta)} problem solving context where students are encouraged to engage in mathematical thinking^{(ta)}. They may be involved in whole class^{(ta)} or small group work^{(ta)} discussion^{(ta)}, so they have a good opportunity to practice using mathematical language^{(ta)} and questioning^{(ta)}.
This means that students do not need to be able to explain their ideas in full: they can use the calculator's feedback to discover whether their ideas are correct or not. This is also an exciting way for pupils to realise an initial idea that fits the data may need to be extended when new data arises. This resource therefore aims to develop investigative skills, as well as introduce pupils to standard index form in a memorable way. The pupils can later use their knowledge of indices in discussion |