Variety of areas with fixed perimeter: Difference between revisions

From OER in Education
m (added guidance notes)
m (edited wording slightly)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Category:Maths]][[Category:Primary]][[Category:ORBIT]]
{{Rinfo
|type= Lesson idea
|attribution= Anthony Or
|title= Variety of areas with fixed perimeter.
|tagline=  Interactive GeoGebra investigation that allows children (age 6-10) to explore an element of mathematics for themselves.
|image= variety of areas with fixed perimeter.png
|topic= Visualisation
|subject= Maths
|resourcenumber= M00XX
|age= Age group 6-10, Primary
|content= Geogebra has been used to create a simple interactive applet.  The applet and guidance notes on how to use it with students are included with the resource.
|related resources= This activity is a result of the 2013 [[ORBIT/GeoGebra Competition]] that asked entrants to create an open-ended activity that supports interactive teaching and active learning for the 6-10 age range.
|other=
|final=yes
|licence=
|format= Embedded GeoGebra applet and guidance notes.
|resources=
*  GeoGebra file:
[[file:variety of areas with fixed perimeter.ggb]]
*  Guidance notes: 
[[file:variety of areas with fixed perimeter.doc]]
}}
<ggb_applet width="925" height="578" version="4.0" ggbBase64="UEsDBBQACAgIANhgQkIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ22XezzT+x/HRblELjmzpeMSXWTDCNWMEpJf5ygJc9mwpUKuucwMuc1sxKmDjYOSUgzNb265j8mhUq6ZS6XcWiIzcv990fmd83j8fn/ss8c++34+79f39Xq+H9/PN/GiteWe3Yq7hYSE9lidM78EfLcBn3pxUWD0Vz99BpjfY2VuehnPnc728e5rA7dKrpxc/zJx8XKLn6oGjE35HpenppZXpVYv++4xmUxmfI8jk2XI4mfQu8CmsnI/PfEtHuSI9fQV2gVYHIwqbfzTGndnPN9zenhJqcoz89NxOv3F0M07N18aoxObR+ojsvDT3QUX4HCljqCwvYS5T4kro34jtdHRU6hH3rXhExk6rm5uiPT7sY2NrF5Tf6abPxN/LiF6X13sUEPUqeqgqUuBgs92/bMCAa8/SWZj8W1d+OJZ4+ddOh3O2by+amvHJaTgIudTh01INrFO4aFNcHbozMihUkydl0sOit4lXebVW5hfU2NUjf+GLYtcW2ZlDFffPFJzIPdUlHVleHi45XzjcE1owQY1an01TA8OT80GG2Kz+aMc6sxtgUBw6HyGtlIAJioqKmT1Q3OCZ7TvSC1dOXx53jMzY3qwEjyufuWMZKk8xnXCqwYW9aykpGCeQCCUzc+NSfI+NMWKDTBXwxDKXyv16ohLgeZr4zyDXBKktzztJEMy+1To16H5SNKjMkWcZyHmrPeVKlRT8t0nB7Rc65ED5d4Ogavfv7G6YU4sjYHqm9cCP7Djr7Qm7Ruo5vUVnzdKpckfsT4oqQA712kUvvCFrJ82Ei0idvbnQSbOMnPkBf2Y5R8FQX0l6CzDO/yJziPefQyrzkqcJFj7l8X4dyXpKam6kqV3G+oryks1ojRX6MeudZX5DVZoFYuhGx4T3Y1/NiGeeIl7E8aVXnSmM0YYkXxB4Tx75UEEFaxjbXjjberXwTKP8yFEf3+4QJQtjfXoda0ZX13id0dkHfcruXFR5VRk0HG2tYdXcGoa1OHqRpHa4vRgxotMA+hAQ9RG6MT44lSp4kRr8v7urBvviCFI5KMg/pRjs0nQ5MUyIMCglck3D/6kgKBnXZpLsjoT1kC4Bxja8zwerzZvVckoBAatObt32vajjmZugTJ7rZBHpM8NLiG6MhLQ/LmxDk90tkkEwTzikxH5ITi9fDKy1TdNqcXEy8WQ5Tf8zOBk8OfLetde/cEKmNxPWJ6f2ldwUzCETau9MVDGGpVRRtKG22YPxz2fTy7OMvLhsr4gI6CfEYH8nhPByBdZDw8ZEjFlxLgkR3z27PJy0dryglZ7bnvkp7bfWF+Wx43D5q6UXevMYc/FC1Q33imG2RjHrTQTJHnHXUuX5DATThOZxuELob6X6mNRjgajeCNy+8dyaw8XP2aPKTtBcVjfjmAXz+UUrXJnaRXNUtBphAxmhCIBZBVpt34mKli/RMPPY2JskfrEtmFpbvKkTQm9Uhp7/UsygowZ1qy/L2YQwSqOCNzBWlsW8Bg3UWJvRPJve+JNQr+6zAGe/r42+8HsmWsUv7ZiuqkbT789KDAbmQtcWZiewY+pd/IIFrV1ma/49umpKufRb71niY4UvA/429Iz/Or3gGWpufW1FW5w2Fh7Wk+Bb5H2XG3aQ3JlbZIDumKghPI9L2RM0RR2IGVqnN0YpGl2UEn0UfE5guOtItjbXpLdrjbkUpH89f0vL2jtZrn/Vs8pIz2YkJLEOIrYwI8S/V+ITV9R8Ledge2ucuRa7Kj0b4NKpo6J+C5o3YtYHqoKwJljqF1Mt8xdXHaER3SFfxTkMmM368AELebSXbjq9ej8MP64h6lh3b+k3unHm9bA3x+u13h/1RO8a4h9jmBzi6HxvsKz+9G8weOubl7HofPpSW3eNoi+Jzdy2+FO917SiBeZmq9J+4/tQjOA3fbYNFXnhY4t0cwhcWWh/JxbWaM7Rm5lKTJMvN56sYKFfVoJwj5LxF4J1oGjuTGBi8CS40OfwF6n79cefGfKvpWFSDPIgW+Xty/FZD9E/6QK3V01XBd+XEni95Kusvf3x8o1lG6Kab2+OmW3i5t0VFLTidtf6tpJ8sUhRY+dpJUgZNqWKlHBwqEh1tmNTpE1r+D0TrN9tmn9ebXJCtehUBltCT9m1+mOyxvjqTvrNbXqA/aZOglmaH5C3X9KRZ+B0CpcYN2leNijahG4bcpUV5aCQFXyqafzyhf3ATeLO78KHp/OETxLzdAp8JEUItVWaAlB5hCYFmcM5b8gWLVvgZDyTGO0HN2S0RtfqT3IoCL9wo6Oaul8tMs4lYf+gG1qZI1h74/HJyZ7wuxbnkKS5HaKkpZU4XD5WakY9yoU6OzPOw8bioIlRUkCUze3TN3HYe5u3Ev8UWzTe6xuTGPjar8pMk/Pub1RXXO/svIrgifahr4QZuGBrRM2zv4Igno1ODAg6R1zepkoXZgDOjrnMxdq/7OiYiAVJFBXwDDzIKUomyQHhsYjBjotETQNPiIHZTcmFVAtNguTziFIdhBtBSkp/lb1KhSkL53qIZmNTwIluSHoH/ZtyYUY7tBWCJClvYW4wLasi8wCHzZsPWTPetiDxFrIx4S1UCqGSi0ZEIowjwIKzgHqtULtWWvKzLzPjVD7y+hwDmXvYhgwFBM4FGwt1kIXkCbhZYy1kDDs4IL+VvDCKiHa09saAcxo28cPiCziUxBw+N34A3duu4NI1F0izURZCO2qlLYCqXwMq6uyeRPSwiLd9mJNTyddYCmoNyNYQI1hQou6/eVaDtS+RxcwgOHAeJziwLg+gW+hHEbOk0F2/UB9TC3+/ymSP6FmHxcdoPdCLDr6SabMqJX4E4lfbkhtajz/tKlRHzcJ5Lf5J10ITE0Igih3OSvX45PFAbL+vkYWikXFV7dQIiIipiosGdf/LQvs7Lzer27P4hEAEShAhFmFNfqtCSAv+D0IWlhSh7X41X2WAso1Dh9XgFK+UUAcQB+2nWtHR73ZeRunANVT2YaludAF1vnn6nURQFYpAAwqZk/z4UbOGS9h+f2xf3skOQkcG8pvSW96qSAzBYe/RIgDLmNxLljOyMhI0KC6vf4BGiCuYwOQ5NTeD0Q2v2mAIvCzPQvwDAHI2bKqJQIYXHx+sLSZ7XMhwGt90l+qtknyY7q5cQlUDnGbFSnvDg7WRBxQ2bllWdNTCX8mObaxpfU90BlwlZ2ij/ZtaS1cUiWD5KBq9jesGG3iwvLD4noj60r8PZsIagGe8oADkD6OnI9Dxf+zp5o47KcAjWdlIWdlcwB8/JlwRjCYemKzItaihUIGDe6F5nFiEpNNX0qKNC9v9Z0CVW4nSS6fTbsr/cOtvTcAayBqUxB7oCO3o/UEFLqjnLUVoL80tbRWbeU4kHoZQMiXbsk4ceLEpAKUGwx4FVGL5aQW24IrOgHMlYC8Cr0Bk1wJgF07b/9P+/160egqU430AWsH2QoCD8jq7vPGjG96omoA1D3vFUPdFUu1cwdUJCa7m4hvNwaQ7ugBJVLCfHqCDkadHaQHCLddGXKu9D003LCeufqN32m1qNOQv3EhDNyhbv9lZuZCpTGWU1KibWL7id/gl3vwu8vK2iIXa5GoVrfN+tFXm1H3rMsy8zQNf2PfufA8qkQJSZtfnbflnlxfX1jslD9y54nvRxOVfCuxfZGzQlfv6PVHrmg5rkznrFfjEoqUgr4QZRHiSRlWM55ihgsBM6pVKGJmSKqGC+PwKe7r/Fjid54OzeqF/pQqrKkPKxbW3y1yLJF+WCluSVUrJLX0Mxl+N92zy5Qm04UVW1r8htu+FsCEw+ZQhjleXUZZQak6G6vbqw7urjZS2kmS3vKn9xfG9QanBNRvKYsZIJAZf7tXFIr4ZND04ghKVFH0KtKVv01mrnJ8tCevwFIXZoiLAGBTOakSt19I/lexJrgLYzdO7gLAKobPbmQJMsHN/kzNJGDBJlsxQBqME8Ch17inBwSVlpG5Rn9cI8VaCMuIVuChRZ0m8BnRfZEzeq/dq2E6D7RElNKLvuq9LvQGZszMzL563Cs3L//RLGONgNe6HtOFgOycNzQOBXZP5B/wycNj4Cp/PQc2nw7/oNGnGgU8E7C4Tba1wFvsxl0D7mIDQbZkoBzuTci9DTP3sMNapJzWgVEdGJPFVLX626gAWPDAVfRPiaCO75pMbEEFdBTY1oez+Q6Rd5OJlDCgF/c+ORUuI/Lxq+qP/d3caDLCIsd2qIsD3YqM3WzRKwtR/izNDfi/HzoD70dCVhbW5iVn3GL+A1BLBwhP3i1LdQwAAEYNAABQSwMEFAAICAgA2GBCQgAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAgIANhgQkIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3ZctvIFX2e+YoupmrKTkQKK0l4pHGJlBVr4kUceSaLy+VqAk0SFghQAChRU/Mwj8lXJG95zTfkUyY/ktsbVooEKYqmbVXZBtB9e7nn3r5LNwgfPJ2NPXRFwsgN/MOa2lBqiPh24Lj+8LA2jQf1du3pd18fDEkwJP0Qo0EQjnF8WDMopesc1tr2QLH6hl43dVWrG5rWrmN7gOtt0mwalt60VDyoITSL3Cd+8AqPSTTBNjm3R2SMXwQ2jtnAoziePNnfv76+bsihGkE43B8O+41Z5NQQTNOPDmvi5gl0l2t0rTNyTVHU/b+8fMG7r7t+FGPfJjVEWZi633391cG16zvBNbp2nXh0WLOMdg2NiDscAU8tTauhfUo0AUAmxI7dKxJB08wj4zkeT2qMDPu0/it+h7yEnRpy3CvXIeFhTWmYFsWhpbTbTaUFDzUUhC7xY0GrijH3ZW8HVy655t3SOzYiEF25kdv3CIweToEj1x+EgOZhbYC9CJ6j+MYjfRwmBelsdKh1fwZSswmDcwBgYnvKnqGwv3wGmeGALA4Cj3WnoF9+QZqiKWiPXlR+0eDSbPIqhZcpOr9o/GLwi8lpDN7c4KQGpzE4jaHfhTtVcqe31GrcaZnhRHfroKkprfx42i3jqc0FA3J+q/Cnmko6nqnssT/sb2lEfRGLxRH5890GpIq1BRYP9uXaOBD6iaIRpRVaE5NxRDVWt5BpUcVTkQna2WyBnplIteDS0hDoI1JNZJjwqLZRk15bSG9BhYF01EaUTtURU0+zDf8YLdZZE5nQGS1twapAKgxkIFNHKtNqA4EuI7YyYJVoOlCYJjKhER1e1WgXehMZTXjS28iAOdJF0VKBUIeG8AzDa0hXkU4bqy2kNVGT9qcadLE123Tq0KWGmgpqqrRDWFewpvh6Avo20ik3TQGX60+mcQ4ie+zI2ziYJLIAajBAqZnjBilnBb868HCfeOAYzqkkEbrCHl0NbKBB4MdICrHNy4YhnoxcOzoncQytIvQBX+EXOCazE6CO5NiM1g786CwM4m7gTcd+hJAdeEoy58BTM/daMmt40DMVRrbCzFQ0M/etueMGUIOmEYHxgzCS5NhxTilFahYAyde+d9MJCb6YBG6ejYN95mMOyNT2XMfF/k+grHQUiguSLocZYelyTL0tJxKEzvlNBBqMZn8jYQBrymq0Fa3V1CxNtVptDZrd8BpDtxrgWS1wJq22pbMeIxvTtac3G00VaNsqmFyrqZi01dw607L40OQqkRCekZTZYegmukLvT6NO4DlJNWO/iyfxNGTBAizikDJ15A89wlSElYEnti/6weyc64bO+3pzM4EnhU+gP2SwIzANmmkCgbj2+ZXR0JklVAqjURiFIpXNdZJ61dIYBbv2+ZVRgfbyqQlOVcmlqshh3IgZNKUmlo00VlT3qWOf+m78Qj7Ern2RskobvJqO+yTRoHyf6ub6pLOGGCOK/yKCNnr/18z9mxGJMYs+NN202q2WCf9qVrvNFbWgogfRBDTaiUaExHOVlvnWktJCo0GXeN55lrSlpJS6MA+Z7vkKl3jINWEtotMSurakIx61S4GP0OjcDgPPYxK7ytzbrP1hrU71koION1wH8E0wpcYKkD2BaHbq4U7GK9HiP2Y0nz4/5/12Um9JS3+aW9qBwSISnkEw5+U65Qw9B/5IrsEP0D8rRInZ8bzg+hwsr4u9Z44bB+nsWNUbcH1v3ElipsjlFGp/gIsbEidn37KAgqBOWPSORBT/Ek944IL3lCf6XpNdVXGFUIZdteRZVUSBJgg10VCVN5qkFISqpFRljSkoLfHcEpSWIJTlunhui/q2aNeWI8ghDEFoiIqmIJRzFZNW09nLAsm2IblQZN+abCubiqspyk1BmPAvrrLcEs8t0U4y2RLluuw/GUByo4se2qJClyMwAr50S0v14IKEoGzCnYEhnwbTiHvnjCY4oE5jeOQVwh5iaqt/BOvDSx0yDIm0Wh7Lwri1ZLVK1lOVillXJ2EwPvWv3oAjKEzgYF/O8iCyQ3dC/Q3qQwh4kWosNVwYIsisCjMPDWrOV3vsxtQuwjqYxiO6LI58uPo3qNt42UCvwwZ65kx5VIk6U8BpuoeeBzDSn+CfBgwA0Qc0pz7aI2PIwVDMHJE/HZPQtROTDJGPOyYxCVmaB5xMBbOa0hD80qWLgv4HsENFg56aaai/xWnBSp6MmIFOzRKYgCyirLeXgSOGFnSRR/NKNHZ9lqaN8YxH37gfgYGJIbMGEfppZs1NhLCfqkLnj6CJyRL4G2rM6c3AnZHE5AGy7s+gSTjHS+o7Y4jqLiBXjZhpjoUrZzfPXcchfjJZ7IPOMWlAYDNhE4aIknDbnzScAO8shMhoi5APldQMFD6i+xMSXwwmbwa9zdAf0A06RIm00D5KJkSny+PavKh5edLTElFmFlAVWSoVZZldShEVhyqkwa4/U2eVdrYG7uTS500iHki444nn2m5cxNYOxmPsO8hnedoZjehqad6AIQI/J0NK+/bUB3wjQOgt3kMzAF19t4dyhTes8J0AaxrLHs74oGKokjxYGJngfVYWiEhPF8pDho1VJKIukkhRYdWywqrzFBYismGfGzaEAv/HCbc0EFj/RI3H23gPKe+++Z2qfFuUvFWQvCqnzIBhkRWboJktLVjf3HJZgO7rZeq+3HIxpNfV9/XRTfFSBF7KErz0qniVzMuRMC+PZo/OHoPcHtfyYJZtSh7lo/VQpkZ8yC99YdLvbFasewerI8FSwAIAXquC1dkdsJSKK7EqWEXj6t28oL4nb19fw8xVpnNYo+YPYZ2Big1aV7Sl/WW21LvJ+bd+7VYP0lzsQVY2wdVd4kIDzAIRXiIlX9W69T4D61bVG6y/YHvv1dS+9daxb7SHnVm092/heu+1nI3rrWzjaA87A9imrdziRCouJlBV8qcKFia/UKumUHI3KpNCKSKFUlfOoPSmQNIwzEwKJVi5vxwKxjdTy6LIxvqyPCrvjpLQ/ZZ4/2gPnb3jvkkW9fYQaHI5wO+uEuB3t7wSXg8GEYmpvOqaxcRV11rVVkpbJmWWWCrWxgOCYeAvjAe6PB6gBqSIOvX1KicOODGmlp2S2zx8uOStFocLdAbJrgfrcl093WDSVnU9rxMzRFybk8kF959xrmiZpbrd2w4A0yOPmorECoB5KW8ZXhAyoQc1r/03IfYjumm8Lsp4XszwkXCuq4WYwfqMgLZ3BmapzvWS+fwMYL5cHtJtD+miPn9ahiPvFUWwUfCKLAanrq5b8oNksY8rCo7c+47vwvT2dmtfX7w89E9Qal0us15JZoPVZDbYlV364t7j4oW2ayLLg9yfxnEm9uOPy5x0Gpzbge+4PCuh78QI4kdn6Ld//Av1HqPf/v5vVvN+vDkTmMbymqnz1KvVXDEwhHxqOnM9F4c3xYrMDj6rSTbvezQXYpv3c/bzkyLO7R5i4snt9eMJA4p1+hKHF+gVuUZHIcGLFxXdLey4VPZBWN0eXixeW7ntwYtdMYb14jaOoTTM+/Fha+Hduc2SeSug7T2gXWED4oJD7ZWgPl1lm+F0C9sMKzr6ktPYyC7CD0GM4+KhwhHH0FL++x/0exTz7YHTEqJH3+BJEH37Xl0F2bTRziD8Cr9iCLPrxg9u5iLMdtGrYPz9Kth+/2VjWg3R3jpa27ub1q5yRrS7AHerAdxdB+Du7puFbWzfptaRQf09x7iXKdULAJc2dXXeFGfaQBcfZOPLTLlxWLOrCqu81at/aVu9+HYd3SoTt6sovX46OzeL0f7wgPN2tiIftHqb++sPaN/jPuKyU+nOLafSavlU+niV6OV4d6KWj3nq3JPRxrF8D21egCK2ngJJfClDE4eHJP11ghHtfoOR+duVYrdyV+OVYHk0/XA6vZnTvIfT6a0A7ewMzJ/16XR/lwzH53Q6veCI4Dh1oUWnOVzsDnOHBMNdOSQovida360TmZ58T64I9mgFsEcPYC+PvUcc6WEJ6WerRNjPdifC/ggHMuL88FHdUh5nN1+flUDt8PxyFWhlk50B+CNsbR9XBvh4dYCPdx3gzaaIiw5nKgDcWx3g3l0A/jzOZpI3OiogfLIKtie7q7ab/4FdeWdDGkeG7XHykB7K8K2Lk7k7HQZv1s82c7LNLpMH+u2hdfY9jC/tEKZ/21p/2D7dfLr9gPW2j2EesN4C1oOH45dN4Vz6uWtMZrH8hfA3l9Mg/vacUBYIctzBgITEtwkvZ33lBUUb1/I93T3DvlNQN/9HnYi9RGyId4i1xdo3903pOT//uMOb0o9i9qQ+3hwS6cvS+hbelY7RIVL4+9AxDuMj+ZvVt/Etb0nTrsShXe79aKlsx4myVVNZLaeyxyEesm5C4InFkSgOkENACXDEB/CIP4xHqH+DVGSPEZslDSZdP0PEfvQraRrV1X6ZdlQ6mfrnvJOpDW09zZf27WuFfsIWdEgvxeDzpaHnpHEaMTDTzzTZI+wPifOUoy6qMcAOfYRDIABeozH2PBI+RagLJvACcfc6xxax8hVko29CNnNPDT+WbEwuG3W5bI7ylv0FWwPVoDvahClfG5UlH6HJs/VnumqrcdXZYa66ea7O5PKpxll3hzk7znNGfwpTjanj3WFq4WcvjrTidy+SLbrNzb0css6f+y3fkZjzeRpl/udpbokCqsPRKcGhfslwdEtwVPqs5GeLx/GXvVr6QeARnCYY4meTBUiyH/Xd1KdHN2T95iZIy8KsZQlSzCJgdTEz6yVELWWLPx5lvxSdk+j879df4U8H2xf8brnXdIXT5Mgo8747VVQlt6hF6YR3wYeWWPywOosfPjEWx6uzWLIFlVjclimYmwAa+YB8RHzkFtO8KC4kd7nfRvMiRFPyGJYbHmLXXyHLM+6a5W3ix+v3keZZRlEC+9lPZNNn+T8offd/UEsHCNkYC3ltDgAA3mkAAFBLAQIUABQACAgIANhgQkJP3i1LdQwAAEYNAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAICAgA2GBCQkXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAuQwAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADYYEJC2RgLeW0OAADeaQAADAAAAAAAAAAAAAAAAAAXDQAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAL4bAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" />
<ggb_applet width="925" height="578" version="4.0" ggbBase64="UEsDBBQACAgIANhgQkIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ22XezzT+x/HRblELjmzpeMSXWTDCNWMEpJf5ygJc9mwpUKuucwMuc1sxKmDjYOSUgzNb265j8mhUq6ZS6XcWiIzcv990fmd83j8fn/ss8c++34+79f39Xq+H9/PN/GiteWe3Yq7hYSE9lidM78EfLcBn3pxUWD0Vz99BpjfY2VuehnPnc728e5rA7dKrpxc/zJx8XKLn6oGjE35HpenppZXpVYv++4xmUxmfI8jk2XI4mfQu8CmsnI/PfEtHuSI9fQV2gVYHIwqbfzTGndnPN9zenhJqcoz89NxOv3F0M07N18aoxObR+ojsvDT3QUX4HCljqCwvYS5T4kro34jtdHRU6hH3rXhExk6rm5uiPT7sY2NrF5Tf6abPxN/LiF6X13sUEPUqeqgqUuBgs92/bMCAa8/SWZj8W1d+OJZ4+ddOh3O2by+amvHJaTgIudTh01INrFO4aFNcHbozMihUkydl0sOit4lXebVW5hfU2NUjf+GLYtcW2ZlDFffPFJzIPdUlHVleHi45XzjcE1owQY1an01TA8OT80GG2Kz+aMc6sxtgUBw6HyGtlIAJioqKmT1Q3OCZ7TvSC1dOXx53jMzY3qwEjyufuWMZKk8xnXCqwYW9aykpGCeQCCUzc+NSfI+NMWKDTBXwxDKXyv16ohLgeZr4zyDXBKktzztJEMy+1To16H5SNKjMkWcZyHmrPeVKlRT8t0nB7Rc65ED5d4Ogavfv7G6YU4sjYHqm9cCP7Djr7Qm7Ruo5vUVnzdKpckfsT4oqQA712kUvvCFrJ82Ei0idvbnQSbOMnPkBf2Y5R8FQX0l6CzDO/yJziPefQyrzkqcJFj7l8X4dyXpKam6kqV3G+oryks1ojRX6MeudZX5DVZoFYuhGx4T3Y1/NiGeeIl7E8aVXnSmM0YYkXxB4Tx75UEEFaxjbXjjberXwTKP8yFEf3+4QJQtjfXoda0ZX13id0dkHfcruXFR5VRk0HG2tYdXcGoa1OHqRpHa4vRgxotMA+hAQ9RG6MT44lSp4kRr8v7urBvviCFI5KMg/pRjs0nQ5MUyIMCglck3D/6kgKBnXZpLsjoT1kC4Bxja8zwerzZvVckoBAatObt32vajjmZugTJ7rZBHpM8NLiG6MhLQ/LmxDk90tkkEwTzikxH5ITi9fDKy1TdNqcXEy8WQ5Tf8zOBk8OfLetde/cEKmNxPWJ6f2ldwUzCETau9MVDGGpVRRtKG22YPxz2fTy7OMvLhsr4gI6CfEYH8nhPByBdZDw8ZEjFlxLgkR3z27PJy0dryglZ7bnvkp7bfWF+Wx43D5q6UXevMYc/FC1Q33imG2RjHrTQTJHnHXUuX5DATThOZxuELob6X6mNRjgajeCNy+8dyaw8XP2aPKTtBcVjfjmAXz+UUrXJnaRXNUtBphAxmhCIBZBVpt34mKli/RMPPY2JskfrEtmFpbvKkTQm9Uhp7/UsygowZ1qy/L2YQwSqOCNzBWlsW8Bg3UWJvRPJve+JNQr+6zAGe/r42+8HsmWsUv7ZiuqkbT789KDAbmQtcWZiewY+pd/IIFrV1ma/49umpKufRb71niY4UvA/429Iz/Or3gGWpufW1FW5w2Fh7Wk+Bb5H2XG3aQ3JlbZIDumKghPI9L2RM0RR2IGVqnN0YpGl2UEn0UfE5guOtItjbXpLdrjbkUpH89f0vL2jtZrn/Vs8pIz2YkJLEOIrYwI8S/V+ITV9R8Ledge2ucuRa7Kj0b4NKpo6J+C5o3YtYHqoKwJljqF1Mt8xdXHaER3SFfxTkMmM368AELebSXbjq9ej8MP64h6lh3b+k3unHm9bA3x+u13h/1RO8a4h9jmBzi6HxvsKz+9G8weOubl7HofPpSW3eNoi+Jzdy2+FO917SiBeZmq9J+4/tQjOA3fbYNFXnhY4t0cwhcWWh/JxbWaM7Rm5lKTJMvN56sYKFfVoJwj5LxF4J1oGjuTGBi8CS40OfwF6n79cefGfKvpWFSDPIgW+Xty/FZD9E/6QK3V01XBd+XEni95Kusvf3x8o1lG6Kab2+OmW3i5t0VFLTidtf6tpJ8sUhRY+dpJUgZNqWKlHBwqEh1tmNTpE1r+D0TrN9tmn9ebXJCtehUBltCT9m1+mOyxvjqTvrNbXqA/aZOglmaH5C3X9KRZ+B0CpcYN2leNijahG4bcpUV5aCQFXyqafzyhf3ATeLO78KHp/OETxLzdAp8JEUItVWaAlB5hCYFmcM5b8gWLVvgZDyTGO0HN2S0RtfqT3IoCL9wo6Oaul8tMs4lYf+gG1qZI1h74/HJyZ7wuxbnkKS5HaKkpZU4XD5WakY9yoU6OzPOw8bioIlRUkCUze3TN3HYe5u3Ev8UWzTe6xuTGPjar8pMk/Pub1RXXO/svIrgifahr4QZuGBrRM2zv4Igno1ODAg6R1zepkoXZgDOjrnMxdq/7OiYiAVJFBXwDDzIKUomyQHhsYjBjotETQNPiIHZTcmFVAtNguTziFIdhBtBSkp/lb1KhSkL53qIZmNTwIluSHoH/ZtyYUY7tBWCJClvYW4wLasi8wCHzZsPWTPetiDxFrIx4S1UCqGSi0ZEIowjwIKzgHqtULtWWvKzLzPjVD7y+hwDmXvYhgwFBM4FGwt1kIXkCbhZYy1kDDs4IL+VvDCKiHa09saAcxo28cPiCziUxBw+N34A3duu4NI1F0izURZCO2qlLYCqXwMq6uyeRPSwiLd9mJNTyddYCmoNyNYQI1hQou6/eVaDtS+RxcwgOHAeJziwLg+gW+hHEbOk0F2/UB9TC3+/ymSP6FmHxcdoPdCLDr6SabMqJX4E4lfbkhtajz/tKlRHzcJ5Lf5J10ITE0Igih3OSvX45PFAbL+vkYWikXFV7dQIiIipiosGdf/LQvs7Lzer27P4hEAEShAhFmFNfqtCSAv+D0IWlhSh7X41X2WAso1Dh9XgFK+UUAcQB+2nWtHR73ZeRunANVT2YaludAF1vnn6nURQFYpAAwqZk/z4UbOGS9h+f2xf3skOQkcG8pvSW96qSAzBYe/RIgDLmNxLljOyMhI0KC6vf4BGiCuYwOQ5NTeD0Q2v2mAIvCzPQvwDAHI2bKqJQIYXHx+sLSZ7XMhwGt90l+qtknyY7q5cQlUDnGbFSnvDg7WRBxQ2bllWdNTCX8mObaxpfU90BlwlZ2ij/ZtaS1cUiWD5KBq9jesGG3iwvLD4noj60r8PZsIagGe8oADkD6OnI9Dxf+zp5o47KcAjWdlIWdlcwB8/JlwRjCYemKzItaihUIGDe6F5nFiEpNNX0qKNC9v9Z0CVW4nSS6fTbsr/cOtvTcAayBqUxB7oCO3o/UEFLqjnLUVoL80tbRWbeU4kHoZQMiXbsk4ceLEpAKUGwx4FVGL5aQW24IrOgHMlYC8Cr0Bk1wJgF07b/9P+/160egqU430AWsH2QoCD8jq7vPGjG96omoA1D3vFUPdFUu1cwdUJCa7m4hvNwaQ7ugBJVLCfHqCDkadHaQHCLddGXKu9D003LCeufqN32m1qNOQv3EhDNyhbv9lZuZCpTGWU1KibWL7id/gl3vwu8vK2iIXa5GoVrfN+tFXm1H3rMsy8zQNf2PfufA8qkQJSZtfnbflnlxfX1jslD9y54nvRxOVfCuxfZGzQlfv6PVHrmg5rkznrFfjEoqUgr4QZRHiSRlWM55ihgsBM6pVKGJmSKqGC+PwKe7r/Fjid54OzeqF/pQqrKkPKxbW3y1yLJF+WCluSVUrJLX0Mxl+N92zy5Qm04UVW1r8htu+FsCEw+ZQhjleXUZZQak6G6vbqw7urjZS2kmS3vKn9xfG9QanBNRvKYsZIJAZf7tXFIr4ZND04ghKVFH0KtKVv01mrnJ8tCevwFIXZoiLAGBTOakSt19I/lexJrgLYzdO7gLAKobPbmQJMsHN/kzNJGDBJlsxQBqME8Ch17inBwSVlpG5Rn9cI8VaCMuIVuChRZ0m8BnRfZEzeq/dq2E6D7RElNKLvuq9LvQGZszMzL563Cs3L//RLGONgNe6HtOFgOycNzQOBXZP5B/wycNj4Cp/PQc2nw7/oNGnGgU8E7C4Tba1wFvsxl0D7mIDQbZkoBzuTci9DTP3sMNapJzWgVEdGJPFVLX626gAWPDAVfRPiaCO75pMbEEFdBTY1oez+Q6Rd5OJlDCgF/c+ORUuI/Lxq+qP/d3caDLCIsd2qIsD3YqM3WzRKwtR/izNDfi/HzoD70dCVhbW5iVn3GL+A1BLBwhP3i1LdQwAAEYNAABQSwMEFAAICAgA2GBCQgAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAgIANhgQkIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3ZctvIFX2e+YoupmrKTkQKK0l4pHGJlBVr4kUceSaLy+VqAk0SFghQAChRU/Mwj8lXJG95zTfkUyY/ktsbVooEKYqmbVXZBtB9e7nn3r5LNwgfPJ2NPXRFwsgN/MOa2lBqiPh24Lj+8LA2jQf1du3pd18fDEkwJP0Qo0EQjnF8WDMopesc1tr2QLH6hl43dVWrG5rWrmN7gOtt0mwalt60VDyoITSL3Cd+8AqPSTTBNjm3R2SMXwQ2jtnAoziePNnfv76+bsihGkE43B8O+41Z5NQQTNOPDmvi5gl0l2t0rTNyTVHU/b+8fMG7r7t+FGPfJjVEWZi633391cG16zvBNbp2nXh0WLOMdg2NiDscAU8tTauhfUo0AUAmxI7dKxJB08wj4zkeT2qMDPu0/it+h7yEnRpy3CvXIeFhTWmYFsWhpbTbTaUFDzUUhC7xY0GrijH3ZW8HVy655t3SOzYiEF25kdv3CIweToEj1x+EgOZhbYC9CJ6j+MYjfRwmBelsdKh1fwZSswmDcwBgYnvKnqGwv3wGmeGALA4Cj3WnoF9+QZqiKWiPXlR+0eDSbPIqhZcpOr9o/GLwi8lpDN7c4KQGpzE4jaHfhTtVcqe31GrcaZnhRHfroKkprfx42i3jqc0FA3J+q/Cnmko6nqnssT/sb2lEfRGLxRH5890GpIq1BRYP9uXaOBD6iaIRpRVaE5NxRDVWt5BpUcVTkQna2WyBnplIteDS0hDoI1JNZJjwqLZRk15bSG9BhYF01EaUTtURU0+zDf8YLdZZE5nQGS1twapAKgxkIFNHKtNqA4EuI7YyYJVoOlCYJjKhER1e1WgXehMZTXjS28iAOdJF0VKBUIeG8AzDa0hXkU4bqy2kNVGT9qcadLE123Tq0KWGmgpqqrRDWFewpvh6Avo20ik3TQGX60+mcQ4ie+zI2ziYJLIAajBAqZnjBilnBb868HCfeOAYzqkkEbrCHl0NbKBB4MdICrHNy4YhnoxcOzoncQytIvQBX+EXOCazE6CO5NiM1g786CwM4m7gTcd+hJAdeEoy58BTM/daMmt40DMVRrbCzFQ0M/etueMGUIOmEYHxgzCS5NhxTilFahYAyde+d9MJCb6YBG6ejYN95mMOyNT2XMfF/k+grHQUiguSLocZYelyTL0tJxKEzvlNBBqMZn8jYQBrymq0Fa3V1CxNtVptDZrd8BpDtxrgWS1wJq22pbMeIxvTtac3G00VaNsqmFyrqZi01dw607L40OQqkRCekZTZYegmukLvT6NO4DlJNWO/iyfxNGTBAizikDJ15A89wlSElYEnti/6weyc64bO+3pzM4EnhU+gP2SwIzANmmkCgbj2+ZXR0JklVAqjURiFIpXNdZJ61dIYBbv2+ZVRgfbyqQlOVcmlqshh3IgZNKUmlo00VlT3qWOf+m78Qj7Ern2RskobvJqO+yTRoHyf6ub6pLOGGCOK/yKCNnr/18z9mxGJMYs+NN202q2WCf9qVrvNFbWgogfRBDTaiUaExHOVlvnWktJCo0GXeN55lrSlpJS6MA+Z7vkKl3jINWEtotMSurakIx61S4GP0OjcDgPPYxK7ytzbrP1hrU71koION1wH8E0wpcYKkD2BaHbq4U7GK9HiP2Y0nz4/5/12Um9JS3+aW9qBwSISnkEw5+U65Qw9B/5IrsEP0D8rRInZ8bzg+hwsr4u9Z44bB+nsWNUbcH1v3ElipsjlFGp/gIsbEidn37KAgqBOWPSORBT/Ek944IL3lCf6XpNdVXGFUIZdteRZVUSBJgg10VCVN5qkFISqpFRljSkoLfHcEpSWIJTlunhui/q2aNeWI8ghDEFoiIqmIJRzFZNW09nLAsm2IblQZN+abCubiqspyk1BmPAvrrLcEs8t0U4y2RLluuw/GUByo4se2qJClyMwAr50S0v14IKEoGzCnYEhnwbTiHvnjCY4oE5jeOQVwh5iaqt/BOvDSx0yDIm0Wh7Lwri1ZLVK1lOVillXJ2EwPvWv3oAjKEzgYF/O8iCyQ3dC/Q3qQwh4kWosNVwYIsisCjMPDWrOV3vsxtQuwjqYxiO6LI58uPo3qNt42UCvwwZ65kx5VIk6U8BpuoeeBzDSn+CfBgwA0Qc0pz7aI2PIwVDMHJE/HZPQtROTDJGPOyYxCVmaB5xMBbOa0hD80qWLgv4HsENFg56aaai/xWnBSp6MmIFOzRKYgCyirLeXgSOGFnSRR/NKNHZ9lqaN8YxH37gfgYGJIbMGEfppZs1NhLCfqkLnj6CJyRL4G2rM6c3AnZHE5AGy7s+gSTjHS+o7Y4jqLiBXjZhpjoUrZzfPXcchfjJZ7IPOMWlAYDNhE4aIknDbnzScAO8shMhoi5APldQMFD6i+xMSXwwmbwa9zdAf0A06RIm00D5KJkSny+PavKh5edLTElFmFlAVWSoVZZldShEVhyqkwa4/U2eVdrYG7uTS500iHki444nn2m5cxNYOxmPsO8hnedoZjehqad6AIQI/J0NK+/bUB3wjQOgt3kMzAF19t4dyhTes8J0AaxrLHs74oGKokjxYGJngfVYWiEhPF8pDho1VJKIukkhRYdWywqrzFBYismGfGzaEAv/HCbc0EFj/RI3H23gPKe+++Z2qfFuUvFWQvCqnzIBhkRWboJktLVjf3HJZgO7rZeq+3HIxpNfV9/XRTfFSBF7KErz0qniVzMuRMC+PZo/OHoPcHtfyYJZtSh7lo/VQpkZ8yC99YdLvbFasewerI8FSwAIAXquC1dkdsJSKK7EqWEXj6t28oL4nb19fw8xVpnNYo+YPYZ2Big1aV7Sl/WW21LvJ+bd+7VYP0lzsQVY2wdVd4kIDzAIRXiIlX9W69T4D61bVG6y/YHvv1dS+9daxb7SHnVm092/heu+1nI3rrWzjaA87A9imrdziRCouJlBV8qcKFia/UKumUHI3KpNCKSKFUlfOoPSmQNIwzEwKJVi5vxwKxjdTy6LIxvqyPCrvjpLQ/ZZ4/2gPnb3jvkkW9fYQaHI5wO+uEuB3t7wSXg8GEYmpvOqaxcRV11rVVkpbJmWWWCrWxgOCYeAvjAe6PB6gBqSIOvX1KicOODGmlp2S2zx8uOStFocLdAbJrgfrcl093WDSVnU9rxMzRFybk8kF959xrmiZpbrd2w4A0yOPmorECoB5KW8ZXhAyoQc1r/03IfYjumm8Lsp4XszwkXCuq4WYwfqMgLZ3BmapzvWS+fwMYL5cHtJtD+miPn9ahiPvFUWwUfCKLAanrq5b8oNksY8rCo7c+47vwvT2dmtfX7w89E9Qal0us15JZoPVZDbYlV364t7j4oW2ayLLg9yfxnEm9uOPy5x0Gpzbge+4PCuh78QI4kdn6Ld//Av1HqPf/v5vVvN+vDkTmMbymqnz1KvVXDEwhHxqOnM9F4c3xYrMDj6rSTbvezQXYpv3c/bzkyLO7R5i4snt9eMJA4p1+hKHF+gVuUZHIcGLFxXdLey4VPZBWN0eXixeW7ntwYtdMYb14jaOoTTM+/Fha+Hduc2SeSug7T2gXWED4oJD7ZWgPl1lm+F0C9sMKzr6ktPYyC7CD0GM4+KhwhHH0FL++x/0exTz7YHTEqJH3+BJEH37Xl0F2bTRziD8Cr9iCLPrxg9u5iLMdtGrYPz9Kth+/2VjWg3R3jpa27ub1q5yRrS7AHerAdxdB+Du7puFbWzfptaRQf09x7iXKdULAJc2dXXeFGfaQBcfZOPLTLlxWLOrCqu81at/aVu9+HYd3SoTt6sovX46OzeL0f7wgPN2tiIftHqb++sPaN/jPuKyU+nOLafSavlU+niV6OV4d6KWj3nq3JPRxrF8D21egCK2ngJJfClDE4eHJP11ghHtfoOR+duVYrdyV+OVYHk0/XA6vZnTvIfT6a0A7ewMzJ/16XR/lwzH53Q6veCI4Dh1oUWnOVzsDnOHBMNdOSQovida360TmZ58T64I9mgFsEcPYC+PvUcc6WEJ6WerRNjPdifC/ggHMuL88FHdUh5nN1+flUDt8PxyFWhlk50B+CNsbR9XBvh4dYCPdx3gzaaIiw5nKgDcWx3g3l0A/jzOZpI3OiogfLIKtie7q7ab/4FdeWdDGkeG7XHykB7K8K2Lk7k7HQZv1s82c7LNLpMH+u2hdfY9jC/tEKZ/21p/2D7dfLr9gPW2j2EesN4C1oOH45dN4Vz6uWtMZrH8hfA3l9Mg/vacUBYIctzBgITEtwkvZ33lBUUb1/I93T3DvlNQN/9HnYi9RGyId4i1xdo3903pOT//uMOb0o9i9qQ+3hwS6cvS+hbelY7RIVL4+9AxDuMj+ZvVt/Etb0nTrsShXe79aKlsx4myVVNZLaeyxyEesm5C4InFkSgOkENACXDEB/CIP4xHqH+DVGSPEZslDSZdP0PEfvQraRrV1X6ZdlQ6mfrnvJOpDW09zZf27WuFfsIWdEgvxeDzpaHnpHEaMTDTzzTZI+wPifOUoy6qMcAOfYRDIABeozH2PBI+RagLJvACcfc6xxax8hVko29CNnNPDT+WbEwuG3W5bI7ylv0FWwPVoDvahClfG5UlH6HJs/VnumqrcdXZYa66ea7O5PKpxll3hzk7znNGfwpTjanj3WFq4WcvjrTidy+SLbrNzb0css6f+y3fkZjzeRpl/udpbokCqsPRKcGhfslwdEtwVPqs5GeLx/GXvVr6QeARnCYY4meTBUiyH/Xd1KdHN2T95iZIy8KsZQlSzCJgdTEz6yVELWWLPx5lvxSdk+j879df4U8H2xf8brnXdIXT5Mgo8747VVQlt6hF6YR3wYeWWPywOosfPjEWx6uzWLIFlVjclimYmwAa+YB8RHzkFtO8KC4kd7nfRvMiRFPyGJYbHmLXXyHLM+6a5W3ix+v3keZZRlEC+9lPZNNn+T8offd/UEsHCNkYC3ltDgAA3mkAAFBLAQIUABQACAgIANhgQkJP3i1LdQwAAEYNAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAICAgA2GBCQkXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAuQwAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADYYEJC2RgLeW0OAADeaQAADAAAAAAAAAAAAAAAAAAXDQAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAL4bAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" />


Line 7: Line 38:
'''1)  Overview'''
'''1)  Overview'''
<br />
<br />
After learning the concepts of perimeters and areas, it is easy for students to think that figures with larger perimeters would also have larger areas, and vice versa. This applet helps teachers to explore with students the variety of the areas of a rectangle with a fixed perimeter. Together with the complementary applet [Variety of perimeters with fixed area], teachers can clarify with students that a figure with a larger perimeter may have a smaller area, and areas and perimeters are two different concepts.
After learning the concepts of perimeters and areas, it is easy for students to think that figures with larger perimeters would also have larger areas, and vice versa. This applet helps teachers to explore with students the variety of the areas of a rectangle with a fixed perimeter. Together with the complementary applet [[Variety of perimeters with fixed area]], teachers can clarify with students that a figure with a larger perimeter may have a smaller area, and areas and perimeters are two different concepts.


<br />
<br />
'''2) Learning Objective'''
'''2) Learning Objectives'''
<br />
<br />


Line 26: Line 57:
<br />
<br />


Ask students to record the dimensions, perimeters and areas in the table of the applet;
Ask students to record the dimensions, perimeters and areas in the table of the applet.
Remind students that when the longer side and the shorter side are shortened and lengthened by the same amount, the perimeter is unchanged;
Remind students that when the longer side and the shorter side are shortened and lengthened by the same amount, the perimeter is unchanged.
Guide students to visualize that the area would always be increased if the longer and shorter sides are changed by the same amount until they become equal;
Guide students to visualize that the area would always be increased if the longer and shorter sides are changed by the same amount until they become equal.
Another way of arguing is to begin with a square and then change the longer and shorter sides by the same amount to see that the area must be decreased.
Another way of arguing is to begin with a square and then change the longer and shorter sides by the same amount to see that the area must be decreased.

Latest revision as of 15:08, 1 April 2013

Variety of areas with fixed perimeter.png
Interactive GeoGebra investigation that allows children (age 6-10) to explore an element of mathematics for themselves.

Lesson idea. Geogebra has been used to create a simple interactive applet. The applet and guidance notes on how to use it with students are included with the resource.

Resource details
Title Variety of areas with fixed perimeter.
Topic
Teaching approach
Learning Objectives
Format / structure

Embedded GeoGebra applet and guidance notes.

Subject
Age of students / grade
Table of contents
Additional Resources/material needed
Useful information
Related ORBIT Wiki Resources

This activity is a result of the 2013 ORBIT/GeoGebra Competition that asked entrants to create an open-ended activity that supports interactive teaching and active learning for the 6-10 age range.

Other (e.g. time frame)
Files and resources to view and download
Acknowledgement

Anthony Or

License



Guidance notes


1) Overview
After learning the concepts of perimeters and areas, it is easy for students to think that figures with larger perimeters would also have larger areas, and vice versa. This applet helps teachers to explore with students the variety of the areas of a rectangle with a fixed perimeter. Together with the complementary applet Variety of perimeters with fixed area, teachers can clarify with students that a figure with a larger perimeter may have a smaller area, and areas and perimeters are two different concepts.


2) Learning Objectives

  • Recognise that rectangles with same perimeters could have different areas.
  • Recognise that among all the rectangles with the same perimeters, the square has the largest area.


3) Teaching Approach

An enquiry teaching approach is expected. Students are asked to shorten the longer side and lengthen the shorter side by 1 cm each time and visualize the change of the area, and investigate when the area would become largest. Teacher then help students to express arguments which justify their conclusions.


4) Teacher’s Note

Ask students to record the dimensions, perimeters and areas in the table of the applet. Remind students that when the longer side and the shorter side are shortened and lengthened by the same amount, the perimeter is unchanged. Guide students to visualize that the area would always be increased if the longer and shorter sides are changed by the same amount until they become equal. Another way of arguing is to begin with a square and then change the longer and shorter sides by the same amount to see that the area must be decreased.