Variety of perimeters with fixed area: Difference between revisions
JanetBlair (talk | contribs) (added applet) |
JanetBlair (talk | contribs) m (added guidance notes) |
||
Line 1: | Line 1: | ||
<ggb_applet width="720" height="498" version="4.0" ggbBase64="UEsDBBQACAgIAAFNdkEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ12WB1QT6RbHWUVpi0mABBQxdHkQyFpoorSlKB2WhIEsAYOKdASUbpYmJUqRqhGwgCKEEiD0EEVCDYIgIAJyEBZFBFZaJAHyJr59Z897Z85899zzzfd9d37/e+9MqoOdpbjoEVEBAQHxC+fNnEDbA943hQ+C48V+/JaAgJj6BTMT54j3y4XTfvDxI137zc07icZtmDYoE8eLw0tbpTrY7lRV7tZ4bNtFjZI/JkU4ipae1yyV2nCwfvNArFIRU5KsGKKuXfbQ1vlt2ZujGieq6oonXPWz9f3GWAZXhMi7uF9YX+mfCsOLwsfqxsfrxuqbjFuIvPa6p90ZSN2pK1oxpw0QhLMjT1XChitxjSzpm9//uvgqYKHDss5LoQtCEnFKipSUlBRvvCeGHEhPkrGXkpznbC4tiM20hlfP6oTOPpmgQueimYIKAwlhW5RQoUN6umesUEVKB0ROnjxJaB9KEIIcCTwlbbggnvdI4ZPW78FzRjsOvLN6n6fyPc6w51NDn9nps5cbr0ssAov5Hg+4297s4l1uIXcO8umQXMjKs+IvDOJmbihxT3/9iK3EnLzJsXNRGwxJN7e7Ad8+MgNn2mObpW/eFb3/Gp1ddGlfZZgxL+rWesX3CJj/wny773yBwwJWQsFw11n/YdHs8eOF3AVy1C0XDmcpUUCSQ5kbNKom8nqPv45lu++GcvgHeNq1R7NXeJe3yLpBLSrWefP4iJiYqZhTCmSZ5iv93STPkWBk35D2vp3NXfbmoGKCVfLMzYps03t4s6HiIiux3b0J7xV0lrHgcJCVR4yjkYvKhR/bDgs231i+j2sJ8wmJ2fl+rdF/4mRjzPaa25SdbfH4+/dfxipxugFPYi0tk3E1nnGTIFy/oKBwEkIzxDLjmO3NccNYud0Fa0omcjrmvX0esFi5KOLUZXG4yOiRnslptbJrkOvLnA8VFS7VqqMoGNO7KUlMemzv7NbxTxQ3Wl/h2cjhQv3QrkrXOlXquH4yBGmXpibXj+cqWaY3abhUKSvrx3LqDSL+8gxBkXM1XFTHh2hjVe7k33E6vvt78Yz+hanm0MDNL6Mj44hrgVNNWT9f5XBd2A++0thbLcTcmDNb7+qlsRPzE0uDLyb9rLstuF7d6aPlq97Tqwze5J07d1T2pN5l8jLphhAIxJ47vh3JLr6p01FMJxbme1dH73QXnVvxMNqT6axe8l5OejWZvGbRg/8mup0xsdScuBPN3agTmWVT70zMNIce/2y062/6fSTySU3WsfI1tYToj5/1ovEtgiLu3Uhp9+Pc1iMOkZiaNokS2J2X1vlaKtze3mfosORfnZwYG3cNvq31vy7Uc/SVdXnVNt98yl8L719kERVVo5yj4EIBZl8XGxVP3lCzzmxbiuBNzBz3E++vlRPwkfVTrz18+PCNwaJzofbFds5bIyncvqckmg130I0721HNaHdga7vo1M0+CX74S46CkJBQdkPc+5/pdHquSEjZmB4L773L2ez9lIkU/wiIdPxxdH/SoFfCW0FUpx4hAYDxjaSycEj4/IpnnLynQteosCmcpI4ArpYkJMm4+JWcQiYG4mvMhMFaJObHIWugXiTxdZMXpreVdDR9g8ouPnZ6JY2WuHtBRnU2T0eu3+HrsP4ZF53aza0z9ozFo4WytWzzgsb8IfSS0SCesR3bw2A0UuhR823uY8QiulmgD2/xXeLXP+25bVzIREZ6+uuawVZeGEi5blDVD20UyUZGNezd3IhVC0r8Cq/O5BXQi6x7GI32RmToXlvbvQaXPVCqPwNWR7jonNZ8W1slWPEnIIV6zVAYAok3zrSxsm/WJC8MnB5V7Ta9bW3TXJplpySHgsVnni8RNpFRu/QQCjry2ia++/KETaAailhB60T5nums1oQD8X+AAJSEMahywPNR1iEE4fep8xCRvlu3brEIzABZnaaqBp1xRmzrUmBQeCyusaVIE3fXtpsT6NmdztGfbGheGSBPd41hs4FruAGtgBlcaxXIJ6iH99QFf4IE12Vwvtzmrhavkek8H542MUBW935n2pHbtDT47hWYBgezvz8NrhJYnwanWZVgKGomFAyloMvDglJ2PxN0d5IITHXW0kxdt76mw5V3HAODAEMOd9nwQ2R3urkO1ujcOVUkS8indlvevTWcfAozzl0lx4SlOWCRrTcmqD1dn5+tP8mwMcy8z8pmJ+TYxq7SvV8705FE/7UsSvvVjTfsrckbqFoqYfHLyW1jip79B4iTzqZzWd5GzPdHvZbh4Y3T3big/2zU+uTV/P7m6OwBoTh5aInP3/mjKPj88cIy5a/qyedF6F+HJ8tZhh8iXoGxWRjJdQ1DtYOy6QejjM85ddloe+6My8nI1HAj2O4GiAlg14beHneaIaEiDF4pNMHnitrPhw8untLx53I4+HdxHYbX5WUknLJVyZBh90cXJ3dfCqki3cvvusa2bT+VI/lT9t/tOiTUmUaUpBLOo5UC7mBItNAR1fFmUKpqDK3lxtfgWJrN2G8V5VdHqO2y7+jRnAcrhQbu3KVqcj1g4Kfjw/3g3sqXUmuesUwbZ7lRKmV1WE1E4vLX3WjeWmNp5UAJcy2IQbtK3fkYhtDM2wHqAc7rcmZLLLfBlaQykI0h5YJSkUp9ZLGaeRmRziRmDHQh4Y/LeRWAFI8ldC8fQ5nwnXp4+vJ19nZK0mUiWE6V02058jnynqnQxFJL1ygpMC1rIrRJLgkqplA88cUS5MU+ftVVwBLVERgUWJCmuujpNv7jZoq2sEsNiPQRsl1lUHNuCVMR+7PmA+xGHo7XhScBJzTGUOt5uNRVQK/qAiLda9Ex79gB65K0JABGVQRlMllJn5JDQcGG0HTEpIzgyNwHVkBZpON6PHjyQdHDaoJiKsJAyjWaROK2PEvoJ3A2BQ7T4M/Or/RMv/wRFklEQiLHp/RsBfCmOsobplGuDg6cUBSBSaWeqAMc47XBGa6aBvatJ5jHMh0eytgcJAl4Q2xIgcPRFYDjIFMda7PanwLPZVAI5rFaUhrDA9a6aEARg5JIlVLgp4IwGOxFQ2Gw+UgoCBPMO9PAlxdsNggJrzGG1kDnfAVNSEkIMZDbwwXzATGwnD8vlJKlUTn8rsZUOX8eHbq9drkOodEQ7FaEsL6PJiGsZ3A04Ettgy/17cE6X+rO4yuXaYCb3kA5U3QWPUzozTAn/bkLapuWjyGVfiKMEkq/5b8h/IvoSgPei9IAlhAYDj/CfzhUwAQ1EW7/J4/jj06iYXI1YeggH9/f6/6XfAGkIwZaYwNTVlbr13qAtaDI4PQ07SllMyDDAl7Bu0F1LEv0fV8K3IuNrLUXW+tLg//6ndSZthgtxjTa8K8kMDfouXCNhe2MVPgIG7CgFNwpZgf1ToatxyfJWPoXQPYhCEepj8T5xi8h0Y7wX5I/Wj8YZ1aYxfBL0HdD1QN8PxDfEsn3U80eC/4kdqIKGz90EFzO58p8LC2G+k1QBGyGyckDBHNxLTdm2p5t9WX+2IKgPpbGu3WmTTTu5ME0vpwlAY5etlgqQZiYBTjeRBFM0MH1KeL/qD6HVsI679WmwWNZrq7gB6kpURwkCJ1LEffF/zAgR4UumKwVqLKXn4ipbKIOn94jaRKeD7rjR2mB2WgxfPiCEIj3KnWIEAf6LZGLCwf6pUxMo+6d1cTYkDAlpaI+VNQWQnPUfxLUUbvP8GmS+hNmeUvw5LrWDvaSh4X1qBoX+DBWlDQHatmfJ1/P13Q9YE9MuS+3joMLtgN/ngUumNuZVZl6xv8bUEsHCPeN+OUMCwAAYwsAAFBLAwQUAAgICAABTXZBAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAICAgAAU12QQAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWztnd1y48h1x6/XT4FiVVJ2PJoh+puOxi59eL1btd7d8kxcTm6mQACS4CEJLkHOaLb8APFT5CqVmzxFHsVPkgbQIHAOG9qmRElo7ri8Q4H46v7z16f/p7tBnv7udj4LPqSrIssXr0fhy/EoSBdxnmSL69ejzfrqRI1+99tfnF6n+XU6XUXBVb6aR+vXI1YemSWvRwmhV8kkVCdUCnnCJvH0ZJJQdaImyWQas3EcTa9GQXBbZL9Z5N9G87RYRnH6Jr5J59E3eRytqxvfrNfL37x69fHjx5fNrV7mq+tX19fTl7dFMgp0MRfF65H54zf6cuCkj7Q6nIzH4au//PGb+vIn2aJYR4s4HQVlFTbZb3/xxenHbJHkH4OPWbK+eT2SEz4KbtLs+kbXScjJKHhVHrTUgizTeJ19SAt9amezqvN6vhxVh0WLcv8X9V/BbFudUZBkH7IkXb0ejV8SzsZKjfmYhowJzkZBvsrSxdocG5p7vmqudvohSz/Wly3/qu6oD/qQFdl0luq7rza6RtniaqXVfD26imaF3i7Wn2bpNFo1+9vC6HOL7Ed9pFRyFNT11+V6MX7BxtV/dQE6d9NFXOf5rLraOPjb3wIyJuPgRfkS1i9EvwhR7xrX741p/ULqF1a/8PoYVp/O6kNZfQyrj2G0v3L1Zls3U9m2cqSpXFh+kk3lwpC+EFS84Iq9oEzuVJB07mgu2a/nzj1pc08tBBSU9Agaijtu+JN13H6AIR+39+PjF9X/q/927kjvqiK+Yy8xe9xQsCep4umrpnWcGkSD4qY81oCzTudFCS2dBHxSshcGXAMqpEaNB+FEv0gSaCSDkAeM681QBaJ8lQGVegcLaKCC8riQBhWhXOl/mKwuJgKuL1a+K3XDCEJ9IxZwGoQV2CzQOAdV49ANhVB9BOcB1yeVtw9JeQkqAib0FlUB02Us24UM9YFUn6i39e1JQMOAlieHMiAiEOX1Qla2N6HKoutLkkCMAxGWF9RNSzeruknp41VAy9oII1e2WG7WQKJ4njR/rvPl9rPQR+sQ1Aa6OiSBOPjF6SyapjPdNbwpP8kg+BDNytZQ3egqX6yD5kNU9XvXq2h5k8XFm3S91mcVwV+jD9E30Tq9/VIfXTT3ro6N80Xx/SpfX+SzzXxRBEGcz8bbMuezsPM32ZZab9DODtbdwTs7ROdvab1vrvcEmyLV989XRXN4lCRfl0e0YUEr+d1i9ul8lUbvl3kGq3H6quplTtNNPMuSLFr8WcNa3qXUJdh2OmUcbjodNhFNQfJV8uZToQkObv8jXeVaR0JfjqkIx4oIRbkKdYj7VO8iVL5UShKp+FgyxcvoV8RR2fj4+OW487/qpJ5dlNf3Tj9sP6LoNm1re73KtrCUf39dnOezZLu7qv9FtFxvVpVf0CFgVdbqbHE9SytGqpatO+P4/TS/fVPDQetrvf201FvjugDT60r3QMcGwnWBr83rtH6tjilLtj1qXB0zro4YN7RlyXZ/OCHVEdXrtH6tjtL41kUzNQ2bWobj5jZZUUW08ci0myZalfCXfftmka2/aTbWWfy+rWp5wreb+TTdIgSvGR7ummWptc0o1n8xvq38+987f7+9SddRaUA4oXyipOT6XzJRqiYVMXpaLDXSSXGTpmsrtVyKllrCDLX6pKuLdDZ7AwAft0dSEx86l6+beKOxOSdk4V0HhtsDObnrOOJ4HHU8jjkexx2PE47Hyd3j0lkZifNFENy8iVf5bFbJ96Hzd1yd/3p0otValZSdGE1n0ad8U4ZnjdKX2sFvZtF5px8u3/5Dp6mX21/V1z1v/UH57p+t757rmxXp6nttYGfgonWFvtL1S8EJf9LXr94MtoF2Nss/vtF9TRbNfp9k67wtXbXrre7s32bLbWBOf9jovX/SL9kqTUAI3gH59H260iUz0V6HuU2+KerOq9MRJPrec71Z7zCiR2Uk+zfdNut3k/R6lTZtelalKXUsqfaOu4F85+3qUl+u8vnXiw9vdZhEBTh91ZTytIhX2bKMxsFUO6T3bfXKZh1pgwXqW3ZPWpMajXW2LqOGFm2zvik11Ofo/la/lr3SLJ3rvCNYV5G3Ct7bCHT5LqxSmvLTCfLpXzVqOEi1oUfvtwbiKmRHs+VNFXbGW/b059xVorreH/ME66Plryqhu8BlHfmWaVq3/brI+o+lvlzV14AuXAteBLcl72Xw+6RLUr7+WAfDOk6Vta2CVNe01O+ij0qHxlqon5DsbHCSjV8+SLTwCUQ7fzcZmGj3kSxsJDuhj6LZYjNPV1m8lWRRaabP3DSXbW4HdDR53F0yNu6qcU6tjKGjjE1/PivHN4J5VifE80jLMtGXmxY65q9T3U+k6aId4KmL1vT14/JTK4VkkhslWdVkr7LbTrjTESz7UUfsCFSndXBrnVy8X6RFUfX7a2Moqz++ypIkrRJL1w993POha3tbnlfV/Z8+BIXueFZpgT+/OJ/Po0USLKp89+urUZt8RTqNWQT/+Pt/B/pe0TaPiQi4j+6fm4Pzd2F9eXPRHTymujNMo8X2o85NJOoA0sp1R0vr3r6nqY3v29D2FmfiKs5kX3EmWJzOlQegzl3h8uLIwuVT9MuX78gxaPakTmZoit3PyRzayDjFLeIat8i+cYsMOqjf3QT5wIC6F07jJ22DQ5Psnm1w/ByNkLs2Qr5vI+T+mofLd2JgSN0HKGV4Gj9JIxyaYvdrhI1mJ0/aCIVrIxT7NkLhcyOUA0PqQVH9KVrhxXFIFj5p4BpanvhA93CwgTWnyCVdI5fcN3JJfyPX+Ts1MKbuQ9TkcUdqcTMcmmQP9A9PIdrl4GLXwyLXobJFp8ilXCOX2jdyqWFHLid1mKs6bF912BGoQ13VofuqQ70duTo3Zfc7GLEnnNE9G5xi9+vz6BNqdmnix3A0e4hLeIrh0YujUGzypIoNzYs+yL4fTLLb5Sotysddtt2VmrybjgK9o7I9wT/+83+C/N2kej0vt//+X8GZ2b4w26VnrZZM/0RPWF160E7h7jB1DAipp0Eo6UHo0iBzYbbPzPa5O0LJwBGy6hH36HHR1h/oc+auRzxwPe50S0Mb23zoQN3TrBocmmoPWwZzMM12W56cvIu2LU+ClndWbtedl+ncZBOZnFpedelhtzyLHsqih0J6KKSHctND+ahH1+xIZHYkMjtyL7Mjh292rHzs6qGQHgrp4cyHh3p0nYxETkYiJyP3cjLSRyejP8RdPRTSQyE9nPnwUo+4R4+Ltv5AnzN3PTx2dueDWzvyoHz7ES2K6FoUgSyKQBZF7GVRhI8WRSiLHgrpoZAebk1K+GhRhLToIZEeEukh3fSQg9fjziG9YwoxB1sXY40w054I0xDTmlyxl8kVPppcoSx6KKSHQno4RxgP9ZAWPSTSQyI9nCOMh3p0h+tge2nq3w7Xib2G68Twh+us7SXpaS+XbQ8MeiRX0y98NP1CWfhQiA+F+HDWw0M+pIUPifiQiA/n+OEhH9LCh0R8SMSHsx5D5+POpHBoT/U8aOD6EZNC3k0KOUoKOUoK+V5JIfcxKeTKoodCeiikh1vI5T4mhVxa9JBID4n0cAsxfPhJoUUPYdFDID0E0kO46SEGr8edSfJRhdxHXLTAu1kyDLkNMm2WzPfKkrmPWTJXFj0U0kMhPZxDrod6SIseEukhkR7OIddDPYRFD4H0EEgP55DroR7dUQMYP5r6t6MGfK9RA+7jqAHvjhrA+HHZWjTQRbuOGnAfRw24svChEB8K8eGsh4d8SAsfEvEhER/O8dRDPqSFD4n4kIgPZz085ENY+BCID4H4cO5fPORDWPgQiA+B+HDWY+h83LmIdGgPQzzsMdOnWUI6NM0eMnf6iANxrDsQx9BAHEMDcWyvgTjm40AcUxY9FNJDIT3cXAzzcSCOSYseEukhkR5uvTbzcSCOCYseAukhkB5uvRQb/kCcRQ9u0YMjPTjSg7vpwX3UozvKBuNpU/92lI3tNcrGfBxlY8qih0J6KKSHczz1UA9p0UMiPSTSwzmeeqiHsOghkB4C6eEcTz3Ug1v04EgPjvRwjqce6tF9QAHG08vWj4L+xvUBBebjAwqsOwoL9bho6w/0cR2FZT6OwjJl4UMhPhTiw7l/8ZAPZeFDIT4U4sNZDw/5kBY+JOJDIj6c+1sP+ZAWPiTiQyI+nPXwkA9h4UMgPgTiw9l/eMiHsPAhEB8C8eGsh4d8cAsfHPHBER/OfsxDPriFD4744IgPZz3844N2x08pGj+laPyU7jV+Sn0cP6XKoodCeiikh5v/oD6On1Jp0UMiPSTSw62/pT6On1Jh0UMgPQTSw61/oT6On1Ju0YMjPTjSwy2e0uGPn965sHNoXzT4kK9mfMR1nbQ74gx7oIaYdsR52yO59kD+jRhRZdFDIT0U0sO5B/JQD2nRQyI9JNLDuQfyUA9h0UMgPQTSw7kH8lAPbtGDIz040sO5B/JQD2bRgyE9GNKDuenBBq/HHT3y5VH0yPRJeuSkp0e+bHNA4PFc5yyoj3MWtDtnAfW4aOsP9HGds6A+zllQZeFDIT4U4sPZoXjIh7LwoRAfCvHhrIeHfEgLHxLxIREfzo7NQz6khQ+J+JCID2c9PORDWPgQiA+B+HB2sB7yISx8CMSHQHw46+EhH9zCB0d8cMSHs6P3kA9u4YMjPjjiw1kPD/lgFj4Y4oMhPpwzHA/5YBY+GOKDIT6c9Rg6H3c+RREeQcZ36J8othAUdmcBQzQLGKJZwHCvWcDQx1nAUFn0UEgPhfRwc/Shj7OAobToIZEeEunh5mBDH2cBQ2HRQyA9BNLDzbGFPs4ChtyiB0d6cKSHm0MJhz8LaNGDWfRgSA+G9HDrkatLe6cHtehBkR4U6UHd9KD31eOnu/4nmCQ+JoPyiEPSYXeSGBqUBph2knhrWFwNytAnNawGZVcPhfRQSA9ng+KhHtKih0R6SKSHs0HxUA9h0UMgPQTSw9mgeKgHt+jBkR4c6eFsUDzUg1n0YEgPhvRwNige6kEtelCkB0V6OBuUe+rxVAbF2t3GPd1tU/12xnPb/bp2t0MfUbJ2t0lPd3u59atwfMB1xjP0ccYzVBY+FOJDIT6c9fCQD2nhQyI+JOLD2X54yIe08CERHxLx4ayHh3wICx8C8SEQH852zEM+hIUPgfgQiA9nPTzkg1v44IgPjvhwtqce8sEtfHDEB0d8OOvhIR/MwgdDfDDEh7Nd95APZuGDIT4Y4sNZDw/5oBY9KNKDIj2c05d76vGM6Qu1NBeKmgtFzcVZjns2lwEMN5+/I0cw3Ewefz5cdefD4Q/Cn5kfgG/nw9Ve8+HKx/lw0tWDID0I0oPspQfxUg9l0UMhPRTSwy3/JT6uD5Dd8SL4M8ztz+zCn2V2HS+SPo4XEWnhQyI+JOLDLf8lPq6XIMKih0B6CKSHW75HfFwvQbhFD4704EgPt/yG+LhegjLLU+RwBecleobNdb0E9XG9BGEWPhjigyE+3PQgXupBLXpQpAdFergZejL49SOW/IZY0j2C0j2C0j3ilt+Qoad7dy6nOab85hGX05Duchro55v20y6n2fp7Vz/v3/QvURY9FNJDIT2c/byHekiLHhLpIZEezv7VPz1E94lo+IvT7S/oNvnw9heoXX9x2r/xVyIsfAjEh0B8OPt5//jgXT444oMjPvhefHAv+eAWPjjigyM+nPMb//ggzKIHQ3owpIezn/dQD2rRgyI9KNLD2c/7uNxqd74CLq+6QI9juYaP0Mvw0dWDID0I0oPspQfxUQ+dlO3yQRAfBPHhnO8NfD7Likfcg8dFiwPAxXW0mXg52qwszUWh5qJQc3HOXvxrLkRZ+FCID4X4cNbDQz6khQ+J+JCID+dszkM+pIUPifiQiA9nPTzkQ1j4EIgPgfhwzuY85ENY+BCID4H4cNbDQz64hQ+O+OCID+dszkM+uIUPjvjgiA9nPTzkg1n4YIgPhvhwzm495INZ+GCID4b4cNbDQz6oRQ+K9KBID+dsf+DTVVY5dpsLRc2FoubiLId32ZzOQHe/GwAms5dmu/1uAOfk1se53d0nEWH1z9Bc76W7HMMeGovz+TxaJMEimuvyf5/PPl3ni6rE2WK5WQfRuPw18VDfKqy/3CmISP0lCkFEyy/4DU0hN+vm8KW+SNicUm1EzXnV1rQ5udqKqy1mtpL6eqevTLkss891CRuZmptVdc0WaT0ru77J4vcL/TG/HpFmEnhc//FVliTpopwT3v0EKs1/InpXc9XWz4DcG0lQwyK9LrdgDSPbt1b0FTfOF0lWz4jrw78zR//y//63ap2/qkCutijYYmCLgy0BtiTYUmBrorceidsvTq+y2zSp32nbR//Xdp1s5/GtaLC70Uh/WNSnFOW/r0fZfDnL4my9BX5Wrij4erFOV4VWWOtd7DTw92m6fKsv/d3i7SpaFFf5ag6LvycH04NxMAUcTAEHU8DBFHAwBRxMAQdTwMH02TioPvcShLEBYXxsHMQH4yAGHMSAgxhwEAMOYsBBDDiIAQfxs8eDkyYgkGPjIDkYBwngIAEcJICDBHCQAA4SwEECOEiejQMcDvzqFtwsGmksGmksGmksGumxaARYNAIsGgEWjQCLRu5j0cjjWjQ72/m27gNwcJaFknvXpm1PIHIT4OQIcHIEODkCnBwBTo4AJ0c+O7nHdXKH5iEBPEwBD1PAwxTwMAU8TAEPU8DDgBzd0fXk8cF5iAAPMeAhBjzEgIcY8BADHmLAw2dn95jO7tA8TAEPCeAhATwkgIcE8JAAHhLAw3Acnm/9xc6g5PfpKpun+gZmYJIF/xIsgpOA6NdfVq07+HVQfarmNTavSfVKzX5q9lOzn5r9zOxnZj8z+5nZz81+bvZzs5+b/cLsF2a/MPuF2S/Nfmn2S7Nfmv3K7FdmvzL7ldk/MfsnZv/E7J/U+4mpHzH1I6Z+xNSPmPoRUz9i6kdM/YipHzH1I6Z+xNSPmPoRUz9i6kdM/YipHzH1I6Z+xNSPmPoRUz9i6kdM/YipHzH1I6Z+xNSPmvJTU35qyk9N+akpPzXlp6b81JSfmvJTU35qyk9N+akpPzXlp6b81JSfmvJTU35qyk9N+akpPzXlp6b81JSfmfIxUz5mysdM+ZgpHzPlY6Z8zJSPmfIxUz5mysdM+ZgpHzPlY6Z8zJSPmfIxUz5mysdM+bi5Pzf35+b+3Nyfm/tzc39u7s/N/bm5Pzf35+b+3Nyfm/tzc39u7s/N/YW5vjDXF+b6wlxfmOsLc31hri/M9YW5vjDXF+b6wlxfmvOlOV+a86U5X5rzpTlfmvOlOV+Z/crsV2a/qmK8ZeJjsZnrgBWPdsMXmvwItx21SycR3i8Xpk0uTJtcmDa5MO3JhSnIhSnIhSnIhSnIhel9cmH6PLkw3RX+uXJhy89C7l2bnnFL6HUpyIUpyIUpyIUpyIUpyIXp51z4cXPhQ/OQ9HldCnJhCnJhCnJhCnJhCnJhOqhcmB0bD/HBeYC5cAR4iAEPMeAhBjzEgIcY8PA5F37MXPjQPMBceAp4SAAPCeAhATwkgIcE8HC4XPi7q6siXZeftJyYDzo8ZKpMvcLFzQGyxgGyxgGyxgGyHgfIgANkwAEy4AAZcIDsPg6QPY8DZLtMPpcDZA9v0axnrhqOb8IIz4ADZMABMuAAGXCA7LMDfFwHeGgeesc3YYRnwAEy4AAZcIAMOEA2KAc4OTYe4oPz0Ds/CjNEBhwgAw6QAQfIgANknx3g4zrAQ/PQOz8KM0QGHCADDpABB8iAA2SDmg1RXvHgZvF4Y/F4Y/F4Y/F4j8XjwOJxYPE4sHgcWDx+H4vHn8fi8V3onsvi8Yc3Wd6zABFOWsO0HYZwDiweBxaPA4vHP1u8x7V4h+ahd9Iapu0whHNg8TiweBxYPD4oixceHRDxwYHoXfUGx/1hDsiBx+PA43Hg8fhnj/e4Hu/QPPSueoPj/jAH5MDjceDxOPB4fFAeL/TrIQc3kycakycakycakyd6TJ4AJk8AkyeAyRPA5In7mDzxPCZP7FL3XCZPPLzNirbNiv61iHA2BmbmMIYLYPIEMHliSCbv6Lr06cFx6F2KCCdjYGIOQ7gAHk8AjycG5fGOcBjv0Dz0PsoAF3PAgX2YAwpg8QSweGJQFs+vHt3J4h2ah95HGeBiDjiwD3NAASyeABZPDMriHeMwnmwcnmwcnmwcnuxxeBI4PAkcngQOTwKHJ+/j8OTzODy5C91zOTz58CYr2yYLnyiR/Sts4GwLzMthCJfA4cnPDu9RHd6hceh9vAQusIGTLTAthxFcAocnB+XwjnEU79BA9D6fClfowtUacGAfZoASWDz52eI9rsU7NA+9z6fCFbpwtQYc2IcpoAQWTw7K4h3lKJ5qPJ5qPJ5qPJ7q8XgKeDwFPJ4CHk8Bj6fu4/HU83g8tUvdc3k89fA2q9o2C58ThiulVf8aGjjbAhNzGMPVkDyeX+tnnTzeoXHofWgYLpuGS2jgZAvMy2EIV4PyeEc4indoHnq/dAQ+dgWX4MLVGnBYH6aAalAW7+QIZ2oPDUTvt47A567gGly4XAMO7MMkUA3K4x3jMN6ksXiTxuJNGos36bF4E2DxJsDiTYDFmwCLN7mPxZs8j8Wb7EL3XBZv8vAmO2mb7GTnq2DaJgu22GRnCQ2cbYGJ+bBi+BFbvEPjgL8JposDXhcNV9DAyRaYlw8jgv8shvEODQT+KrkuEPjBqi4QeLEGHNgfVgp41B7v0EDg75LrAoGfrOoCgZdrwKH9YSSBvo/j7X4B1Tq9XYfmy6f++YdNvv7X7Xe6BK+D+p3qKpCl8rQRvIYzRU/1sV3luriFrs3V9kv3i+xHXfhQjBrFzfnRtMhnm3X6Jl6l6eKbPK5/abz6zXBRfeKcuGlJgJb1v8Gvg1bUXwfdXbYv2dnR9sHfEBd5KTzhfcrf+WMMzr9L8Xh8to/yk4mqKkHvfJQ/vknj99P8NqjkdG26Z7Ddfpu/DPKr4M0Pm0gf6NZyzyzN1unHbfqzm70A+okKkp7AFDrWztJwhvLTPWe0p27EsW6Wr8oYTN1YT92oY90sD4EOpm68p27MsW6Whx8GUzfRUzfuWDfLqr9nqtud31p3HuIuYpv4HzISho6lN8dFi2xe937FOl2WbwfFMi27g7DjIpf6ctoTguJEm9tslkWrT66ZABbkYkcQ9vMW5HJHEP7zFuT3O4KIn7cgX+4IIn/egvxhRxD18xbkqx1BJscuyCudfhZ6RzVUUW5fp/l1Ol1Fv/1/UEsHCDbpO5YcGwAAYEwBAFBLAQIUABQACAgIAAFNdkH3jfjlDAsAAGMLAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAICAgAAU12QUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAUAsAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAABTXZBNuk7lhwbAABgTAEADAAAAAAAAAAAAAAAAACuCwAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAAQnAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" /> | <ggb_applet width="720" height="498" version="4.0" ggbBase64="UEsDBBQACAgIAAFNdkEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ12WB1QT6RbHWUVpi0mABBQxdHkQyFpoorSlKB2WhIEsAYOKdASUbpYmJUqRqhGwgCKEEiD0EEVCDYIgIAJyEBZFBFZaJAHyJr59Z897Z85899zzzfd9d37/e+9MqoOdpbjoEVEBAQHxC+fNnEDbA943hQ+C48V+/JaAgJj6BTMT54j3y4XTfvDxI137zc07icZtmDYoE8eLw0tbpTrY7lRV7tZ4bNtFjZI/JkU4ipae1yyV2nCwfvNArFIRU5KsGKKuXfbQ1vlt2ZujGieq6oonXPWz9f3GWAZXhMi7uF9YX+mfCsOLwsfqxsfrxuqbjFuIvPa6p90ZSN2pK1oxpw0QhLMjT1XChitxjSzpm9//uvgqYKHDss5LoQtCEnFKipSUlBRvvCeGHEhPkrGXkpznbC4tiM20hlfP6oTOPpmgQueimYIKAwlhW5RQoUN6umesUEVKB0ROnjxJaB9KEIIcCTwlbbggnvdI4ZPW78FzRjsOvLN6n6fyPc6w51NDn9nps5cbr0ssAov5Hg+4297s4l1uIXcO8umQXMjKs+IvDOJmbihxT3/9iK3EnLzJsXNRGwxJN7e7Ad8+MgNn2mObpW/eFb3/Gp1ddGlfZZgxL+rWesX3CJj/wny773yBwwJWQsFw11n/YdHs8eOF3AVy1C0XDmcpUUCSQ5kbNKom8nqPv45lu++GcvgHeNq1R7NXeJe3yLpBLSrWefP4iJiYqZhTCmSZ5iv93STPkWBk35D2vp3NXfbmoGKCVfLMzYps03t4s6HiIiux3b0J7xV0lrHgcJCVR4yjkYvKhR/bDgs231i+j2sJ8wmJ2fl+rdF/4mRjzPaa25SdbfH4+/dfxipxugFPYi0tk3E1nnGTIFy/oKBwEkIzxDLjmO3NccNYud0Fa0omcjrmvX0esFi5KOLUZXG4yOiRnslptbJrkOvLnA8VFS7VqqMoGNO7KUlMemzv7NbxTxQ3Wl/h2cjhQv3QrkrXOlXquH4yBGmXpibXj+cqWaY3abhUKSvrx3LqDSL+8gxBkXM1XFTHh2hjVe7k33E6vvt78Yz+hanm0MDNL6Mj44hrgVNNWT9f5XBd2A++0thbLcTcmDNb7+qlsRPzE0uDLyb9rLstuF7d6aPlq97Tqwze5J07d1T2pN5l8jLphhAIxJ47vh3JLr6p01FMJxbme1dH73QXnVvxMNqT6axe8l5OejWZvGbRg/8mup0xsdScuBPN3agTmWVT70zMNIce/2y062/6fSTySU3WsfI1tYToj5/1ovEtgiLu3Uhp9+Pc1iMOkZiaNokS2J2X1vlaKtze3mfosORfnZwYG3cNvq31vy7Uc/SVdXnVNt98yl8L719kERVVo5yj4EIBZl8XGxVP3lCzzmxbiuBNzBz3E++vlRPwkfVTrz18+PCNwaJzofbFds5bIyncvqckmg130I0721HNaHdga7vo1M0+CX74S46CkJBQdkPc+5/pdHquSEjZmB4L773L2ez9lIkU/wiIdPxxdH/SoFfCW0FUpx4hAYDxjaSycEj4/IpnnLynQteosCmcpI4ArpYkJMm4+JWcQiYG4mvMhMFaJObHIWugXiTxdZMXpreVdDR9g8ouPnZ6JY2WuHtBRnU2T0eu3+HrsP4ZF53aza0z9ozFo4WytWzzgsb8IfSS0SCesR3bw2A0UuhR823uY8QiulmgD2/xXeLXP+25bVzIREZ6+uuawVZeGEi5blDVD20UyUZGNezd3IhVC0r8Cq/O5BXQi6x7GI32RmToXlvbvQaXPVCqPwNWR7jonNZ8W1slWPEnIIV6zVAYAok3zrSxsm/WJC8MnB5V7Ta9bW3TXJplpySHgsVnni8RNpFRu/QQCjry2ia++/KETaAailhB60T5nums1oQD8X+AAJSEMahywPNR1iEE4fep8xCRvlu3brEIzABZnaaqBp1xRmzrUmBQeCyusaVIE3fXtpsT6NmdztGfbGheGSBPd41hs4FruAGtgBlcaxXIJ6iH99QFf4IE12Vwvtzmrhavkek8H542MUBW935n2pHbtDT47hWYBgezvz8NrhJYnwanWZVgKGomFAyloMvDglJ2PxN0d5IITHXW0kxdt76mw5V3HAODAEMOd9nwQ2R3urkO1ujcOVUkS8indlvevTWcfAozzl0lx4SlOWCRrTcmqD1dn5+tP8mwMcy8z8pmJ+TYxq7SvV8705FE/7UsSvvVjTfsrckbqFoqYfHLyW1jip79B4iTzqZzWd5GzPdHvZbh4Y3T3big/2zU+uTV/P7m6OwBoTh5aInP3/mjKPj88cIy5a/qyedF6F+HJ8tZhh8iXoGxWRjJdQ1DtYOy6QejjM85ddloe+6My8nI1HAj2O4GiAlg14beHneaIaEiDF4pNMHnitrPhw8untLx53I4+HdxHYbX5WUknLJVyZBh90cXJ3dfCqki3cvvusa2bT+VI/lT9t/tOiTUmUaUpBLOo5UC7mBItNAR1fFmUKpqDK3lxtfgWJrN2G8V5VdHqO2y7+jRnAcrhQbu3KVqcj1g4Kfjw/3g3sqXUmuesUwbZ7lRKmV1WE1E4vLX3WjeWmNp5UAJcy2IQbtK3fkYhtDM2wHqAc7rcmZLLLfBlaQykI0h5YJSkUp9ZLGaeRmRziRmDHQh4Y/LeRWAFI8ldC8fQ5nwnXp4+vJ19nZK0mUiWE6V02058jnynqnQxFJL1ygpMC1rIrRJLgkqplA88cUS5MU+ftVVwBLVERgUWJCmuujpNv7jZoq2sEsNiPQRsl1lUHNuCVMR+7PmA+xGHo7XhScBJzTGUOt5uNRVQK/qAiLda9Ex79gB65K0JABGVQRlMllJn5JDQcGG0HTEpIzgyNwHVkBZpON6PHjyQdHDaoJiKsJAyjWaROK2PEvoJ3A2BQ7T4M/Or/RMv/wRFklEQiLHp/RsBfCmOsobplGuDg6cUBSBSaWeqAMc47XBGa6aBvatJ5jHMh0eytgcJAl4Q2xIgcPRFYDjIFMda7PanwLPZVAI5rFaUhrDA9a6aEARg5JIlVLgp4IwGOxFQ2Gw+UgoCBPMO9PAlxdsNggJrzGG1kDnfAVNSEkIMZDbwwXzATGwnD8vlJKlUTn8rsZUOX8eHbq9drkOodEQ7FaEsL6PJiGsZ3A04Ettgy/17cE6X+rO4yuXaYCb3kA5U3QWPUzozTAn/bkLapuWjyGVfiKMEkq/5b8h/IvoSgPei9IAlhAYDj/CfzhUwAQ1EW7/J4/jj06iYXI1YeggH9/f6/6XfAGkIwZaYwNTVlbr13qAtaDI4PQ07SllMyDDAl7Bu0F1LEv0fV8K3IuNrLUXW+tLg//6ndSZthgtxjTa8K8kMDfouXCNhe2MVPgIG7CgFNwpZgf1ToatxyfJWPoXQPYhCEepj8T5xi8h0Y7wX5I/Wj8YZ1aYxfBL0HdD1QN8PxDfEsn3U80eC/4kdqIKGz90EFzO58p8LC2G+k1QBGyGyckDBHNxLTdm2p5t9WX+2IKgPpbGu3WmTTTu5ME0vpwlAY5etlgqQZiYBTjeRBFM0MH1KeL/qD6HVsI679WmwWNZrq7gB6kpURwkCJ1LEffF/zAgR4UumKwVqLKXn4ipbKIOn94jaRKeD7rjR2mB2WgxfPiCEIj3KnWIEAf6LZGLCwf6pUxMo+6d1cTYkDAlpaI+VNQWQnPUfxLUUbvP8GmS+hNmeUvw5LrWDvaSh4X1qBoX+DBWlDQHatmfJ1/P13Q9YE9MuS+3joMLtgN/ngUumNuZVZl6xv8bUEsHCPeN+OUMCwAAYwsAAFBLAwQUAAgICAABTXZBAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAICAgAAU12QQAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWztnd1y48h1x6/XT4FiVVJ2PJoh+puOxi59eL1btd7d8kxcTm6mQACS4CEJLkHOaLb8APFT5CqVmzxFHsVPkgbQIHAOG9qmRElo7ri8Q4H46v7z16f/p7tBnv7udj4LPqSrIssXr0fhy/EoSBdxnmSL69ejzfrqRI1+99tfnF6n+XU6XUXBVb6aR+vXI1YemSWvRwmhV8kkVCdUCnnCJvH0ZJJQdaImyWQas3EcTa9GQXBbZL9Z5N9G87RYRnH6Jr5J59E3eRytqxvfrNfL37x69fHjx5fNrV7mq+tX19fTl7dFMgp0MRfF65H54zf6cuCkj7Q6nIzH4au//PGb+vIn2aJYR4s4HQVlFTbZb3/xxenHbJHkH4OPWbK+eT2SEz4KbtLs+kbXScjJKHhVHrTUgizTeJ19SAt9amezqvN6vhxVh0WLcv8X9V/BbFudUZBkH7IkXb0ejV8SzsZKjfmYhowJzkZBvsrSxdocG5p7vmqudvohSz/Wly3/qu6oD/qQFdl0luq7rza6RtniaqXVfD26imaF3i7Wn2bpNFo1+9vC6HOL7Ed9pFRyFNT11+V6MX7BxtV/dQE6d9NFXOf5rLraOPjb3wIyJuPgRfkS1i9EvwhR7xrX741p/ULqF1a/8PoYVp/O6kNZfQyrj2G0v3L1Zls3U9m2cqSpXFh+kk3lwpC+EFS84Iq9oEzuVJB07mgu2a/nzj1pc08tBBSU9Agaijtu+JN13H6AIR+39+PjF9X/q/927kjvqiK+Yy8xe9xQsCep4umrpnWcGkSD4qY81oCzTudFCS2dBHxSshcGXAMqpEaNB+FEv0gSaCSDkAeM681QBaJ8lQGVegcLaKCC8riQBhWhXOl/mKwuJgKuL1a+K3XDCEJ9IxZwGoQV2CzQOAdV49ANhVB9BOcB1yeVtw9JeQkqAib0FlUB02Us24UM9YFUn6i39e1JQMOAlieHMiAiEOX1Qla2N6HKoutLkkCMAxGWF9RNSzeruknp41VAy9oII1e2WG7WQKJ4njR/rvPl9rPQR+sQ1Aa6OiSBOPjF6SyapjPdNbwpP8kg+BDNytZQ3egqX6yD5kNU9XvXq2h5k8XFm3S91mcVwV+jD9E30Tq9/VIfXTT3ro6N80Xx/SpfX+SzzXxRBEGcz8bbMuezsPM32ZZab9DODtbdwTs7ROdvab1vrvcEmyLV989XRXN4lCRfl0e0YUEr+d1i9ul8lUbvl3kGq3H6quplTtNNPMuSLFr8WcNa3qXUJdh2OmUcbjodNhFNQfJV8uZToQkObv8jXeVaR0JfjqkIx4oIRbkKdYj7VO8iVL5UShKp+FgyxcvoV8RR2fj4+OW487/qpJ5dlNf3Tj9sP6LoNm1re73KtrCUf39dnOezZLu7qv9FtFxvVpVf0CFgVdbqbHE9SytGqpatO+P4/TS/fVPDQetrvf201FvjugDT60r3QMcGwnWBr83rtH6tjilLtj1qXB0zro4YN7RlyXZ/OCHVEdXrtH6tjtL41kUzNQ2bWobj5jZZUUW08ci0myZalfCXfftmka2/aTbWWfy+rWp5wreb+TTdIgSvGR7ummWptc0o1n8xvq38+987f7+9SddRaUA4oXyipOT6XzJRqiYVMXpaLDXSSXGTpmsrtVyKllrCDLX6pKuLdDZ7AwAft0dSEx86l6+beKOxOSdk4V0HhtsDObnrOOJ4HHU8jjkexx2PE47Hyd3j0lkZifNFENy8iVf5bFbJ96Hzd1yd/3p0otValZSdGE1n0ad8U4ZnjdKX2sFvZtF5px8u3/5Dp6mX21/V1z1v/UH57p+t757rmxXp6nttYGfgonWFvtL1S8EJf9LXr94MtoF2Nss/vtF9TRbNfp9k67wtXbXrre7s32bLbWBOf9jovX/SL9kqTUAI3gH59H260iUz0V6HuU2+KerOq9MRJPrec71Z7zCiR2Uk+zfdNut3k/R6lTZtelalKXUsqfaOu4F85+3qUl+u8vnXiw9vdZhEBTh91ZTytIhX2bKMxsFUO6T3bfXKZh1pgwXqW3ZPWpMajXW2LqOGFm2zvik11Ofo/la/lr3SLJ3rvCNYV5G3Ct7bCHT5LqxSmvLTCfLpXzVqOEi1oUfvtwbiKmRHs+VNFXbGW/b059xVorreH/ME66Plryqhu8BlHfmWaVq3/brI+o+lvlzV14AuXAteBLcl72Xw+6RLUr7+WAfDOk6Vta2CVNe01O+ij0qHxlqon5DsbHCSjV8+SLTwCUQ7fzcZmGj3kSxsJDuhj6LZYjNPV1m8lWRRaabP3DSXbW4HdDR53F0yNu6qcU6tjKGjjE1/PivHN4J5VifE80jLMtGXmxY65q9T3U+k6aId4KmL1vT14/JTK4VkkhslWdVkr7LbTrjTESz7UUfsCFSndXBrnVy8X6RFUfX7a2Moqz++ypIkrRJL1w993POha3tbnlfV/Z8+BIXueFZpgT+/OJ/Po0USLKp89+urUZt8RTqNWQT/+Pt/B/pe0TaPiQi4j+6fm4Pzd2F9eXPRHTymujNMo8X2o85NJOoA0sp1R0vr3r6nqY3v29D2FmfiKs5kX3EmWJzOlQegzl3h8uLIwuVT9MuX78gxaPakTmZoit3PyRzayDjFLeIat8i+cYsMOqjf3QT5wIC6F07jJ22DQ5Psnm1w/ByNkLs2Qr5vI+T+mofLd2JgSN0HKGV4Gj9JIxyaYvdrhI1mJ0/aCIVrIxT7NkLhcyOUA0PqQVH9KVrhxXFIFj5p4BpanvhA93CwgTWnyCVdI5fcN3JJfyPX+Ts1MKbuQ9TkcUdqcTMcmmQP9A9PIdrl4GLXwyLXobJFp8ilXCOX2jdyqWFHLid1mKs6bF912BGoQ13VofuqQ70duTo3Zfc7GLEnnNE9G5xi9+vz6BNqdmnix3A0e4hLeIrh0YujUGzypIoNzYs+yL4fTLLb5Sotysddtt2VmrybjgK9o7I9wT/+83+C/N2kej0vt//+X8GZ2b4w26VnrZZM/0RPWF160E7h7jB1DAipp0Eo6UHo0iBzYbbPzPa5O0LJwBGy6hH36HHR1h/oc+auRzxwPe50S0Mb23zoQN3TrBocmmoPWwZzMM12W56cvIu2LU+ClndWbtedl+ncZBOZnFpedelhtzyLHsqih0J6KKSHctND+ahH1+xIZHYkMjtyL7Mjh292rHzs6qGQHgrp4cyHh3p0nYxETkYiJyP3cjLSRyejP8RdPRTSQyE9nPnwUo+4R4+Ltv5AnzN3PTx2dueDWzvyoHz7ES2K6FoUgSyKQBZF7GVRhI8WRSiLHgrpoZAebk1K+GhRhLToIZEeEukh3fSQg9fjziG9YwoxB1sXY40w054I0xDTmlyxl8kVPppcoSx6KKSHQno4RxgP9ZAWPSTSQyI9nCOMh3p0h+tge2nq3w7Xib2G68Twh+us7SXpaS+XbQ8MeiRX0y98NP1CWfhQiA+F+HDWw0M+pIUPifiQiA/n+OEhH9LCh0R8SMSHsx5D5+POpHBoT/U8aOD6EZNC3k0KOUoKOUoK+V5JIfcxKeTKoodCeiikh1vI5T4mhVxa9JBID4n0cAsxfPhJoUUPYdFDID0E0kO46SEGr8edSfJRhdxHXLTAu1kyDLkNMm2WzPfKkrmPWTJXFj0U0kMhPZxDrod6SIseEukhkR7OIddDPYRFD4H0EEgP55DroR7dUQMYP5r6t6MGfK9RA+7jqAHvjhrA+HHZWjTQRbuOGnAfRw24svChEB8K8eGsh4d8SAsfEvEhER/O8dRDPqSFD4n4kIgPZz085ENY+BCID4H4cO5fPORDWPgQiA+B+HDWY+h83LmIdGgPQzzsMdOnWUI6NM0eMnf6iANxrDsQx9BAHEMDcWyvgTjm40AcUxY9FNJDIT3cXAzzcSCOSYseEukhkR5uvTbzcSCOCYseAukhkB5uvRQb/kCcRQ9u0YMjPTjSg7vpwX3UozvKBuNpU/92lI3tNcrGfBxlY8qih0J6KKSHczz1UA9p0UMiPSTSwzmeeqiHsOghkB4C6eEcTz3Ug1v04EgPjvRwjqce6tF9QAHG08vWj4L+xvUBBebjAwqsOwoL9bho6w/0cR2FZT6OwjJl4UMhPhTiw7l/8ZAPZeFDIT4U4sNZDw/5kBY+JOJDIj6c+1sP+ZAWPiTiQyI+nPXwkA9h4UMgPgTiw9l/eMiHsPAhEB8C8eGsh4d8cAsfHPHBER/OfsxDPriFD4744IgPZz3844N2x08pGj+laPyU7jV+Sn0cP6XKoodCeiikh5v/oD6On1Jp0UMiPSTSw62/pT6On1Jh0UMgPQTSw61/oT6On1Ju0YMjPTjSwy2e0uGPn965sHNoXzT4kK9mfMR1nbQ74gx7oIaYdsR52yO59kD+jRhRZdFDIT0U0sO5B/JQD2nRQyI9JNLDuQfyUA9h0UMgPQTSw7kH8lAPbtGDIz040sO5B/JQD2bRgyE9GNKDuenBBq/HHT3y5VH0yPRJeuSkp0e+bHNA4PFc5yyoj3MWtDtnAfW4aOsP9HGds6A+zllQZeFDIT4U4sPZoXjIh7LwoRAfCvHhrIeHfEgLHxLxIREfzo7NQz6khQ+J+JCID2c9PORDWPgQiA+B+HB2sB7yISx8CMSHQHw46+EhH9zCB0d8cMSHs6P3kA9u4YMjPjjiw1kPD/lgFj4Y4oMhPpwzHA/5YBY+GOKDIT6c9Rg6H3c+RREeQcZ36J8othAUdmcBQzQLGKJZwHCvWcDQx1nAUFn0UEgPhfRwc/Shj7OAobToIZEeEunh5mBDH2cBQ2HRQyA9BNLDzbGFPs4ChtyiB0d6cKSHm0MJhz8LaNGDWfRgSA+G9HDrkatLe6cHtehBkR4U6UHd9KD31eOnu/4nmCQ+JoPyiEPSYXeSGBqUBph2knhrWFwNytAnNawGZVcPhfRQSA9ng+KhHtKih0R6SKSHs0HxUA9h0UMgPQTSw9mgeKgHt+jBkR4c6eFsUDzUg1n0YEgPhvRwNige6kEtelCkB0V6OBuUe+rxVAbF2t3GPd1tU/12xnPb/bp2t0MfUbJ2t0lPd3u59atwfMB1xjP0ccYzVBY+FOJDIT6c9fCQD2nhQyI+JOLD2X54yIe08CERHxLx4ayHh3wICx8C8SEQH852zEM+hIUPgfgQiA9nPTzkg1v44IgPjvhwtqce8sEtfHDEB0d8OOvhIR/MwgdDfDDEh7Nd95APZuGDIT4Y4sNZDw/5oBY9KNKDIj2c05d76vGM6Qu1NBeKmgtFzcVZjns2lwEMN5+/I0cw3Ewefz5cdefD4Q/Cn5kfgG/nw9Ve8+HKx/lw0tWDID0I0oPspQfxUg9l0UMhPRTSwy3/JT6uD5Dd8SL4M8ztz+zCn2V2HS+SPo4XEWnhQyI+JOLDLf8lPq6XIMKih0B6CKSHW75HfFwvQbhFD4704EgPt/yG+LhegjLLU+RwBecleobNdb0E9XG9BGEWPhjigyE+3PQgXupBLXpQpAdFergZejL49SOW/IZY0j2C0j2C0j3ilt+Qoad7dy6nOab85hGX05Duchro55v20y6n2fp7Vz/v3/QvURY9FNJDIT2c/byHekiLHhLpIZEezv7VPz1E94lo+IvT7S/oNvnw9heoXX9x2r/xVyIsfAjEh0B8OPt5//jgXT444oMjPvhefHAv+eAWPjjigyM+nPMb//ggzKIHQ3owpIezn/dQD2rRgyI9KNLD2c/7uNxqd74CLq+6QI9juYaP0Mvw0dWDID0I0oPspQfxUQ+dlO3yQRAfBPHhnO8NfD7Likfcg8dFiwPAxXW0mXg52qwszUWh5qJQc3HOXvxrLkRZ+FCID4X4cNbDQz6khQ+J+JCID+dszkM+pIUPifiQiA9nPTzkQ1j4EIgPgfhwzuY85ENY+BCID4H4cNbDQz64hQ+O+OCID+dszkM+uIUPjvjgiA9nPTzkg1n4YIgPhvhwzm495INZ+GCID4b4cNbDQz6oRQ+K9KBID+dsf+DTVVY5dpsLRc2FoubiLId32ZzOQHe/GwAms5dmu/1uAOfk1se53d0nEWH1z9Bc76W7HMMeGovz+TxaJMEimuvyf5/PPl3ni6rE2WK5WQfRuPw18VDfKqy/3CmISP0lCkFEyy/4DU0hN+vm8KW+SNicUm1EzXnV1rQ5udqKqy1mtpL6eqevTLkss891CRuZmptVdc0WaT0ru77J4vcL/TG/HpFmEnhc//FVliTpopwT3v0EKs1/InpXc9XWz4DcG0lQwyK9LrdgDSPbt1b0FTfOF0lWz4jrw78zR//y//63ap2/qkCutijYYmCLgy0BtiTYUmBrorceidsvTq+y2zSp32nbR//Xdp1s5/GtaLC70Uh/WNSnFOW/r0fZfDnL4my9BX5Wrij4erFOV4VWWOtd7DTw92m6fKsv/d3i7SpaFFf5ag6LvycH04NxMAUcTAEHU8DBFHAwBRxMAQdTwMH02TioPvcShLEBYXxsHMQH4yAGHMSAgxhwEAMOYsBBDDiIAQfxs8eDkyYgkGPjIDkYBwngIAEcJICDBHCQAA4SwEECOEiejQMcDvzqFtwsGmksGmksGmksGumxaARYNAIsGgEWjQCLRu5j0cjjWjQ72/m27gNwcJaFknvXpm1PIHIT4OQIcHIEODkCnBwBTo4AJ0c+O7nHdXKH5iEBPEwBD1PAwxTwMAU8TAEPU8DDgBzd0fXk8cF5iAAPMeAhBjzEgIcY8BADHmLAw2dn95jO7tA8TAEPCeAhATwkgIcE8JAAHhLAw3Acnm/9xc6g5PfpKpun+gZmYJIF/xIsgpOA6NdfVq07+HVQfarmNTavSfVKzX5q9lOzn5r9zOxnZj8z+5nZz81+bvZzs5+b/cLsF2a/MPuF2S/Nfmn2S7Nfmv3K7FdmvzL7ldk/MfsnZv/E7J/U+4mpHzH1I6Z+xNSPmPoRUz9i6kdM/YipHzH1I6Z+xNSPmPoRUz9i6kdM/YipHzH1I6Z+xNSPmPoRUz9i6kdM/YipHzH1I6Z+xNSPmvJTU35qyk9N+akpPzXlp6b81JSfmvJTU35qyk9N+akpPzXlp6b81JSfmvJTU35qyk9N+akpPzXlp6b81JSfmfIxUz5mysdM+ZgpHzPlY6Z8zJSPmfIxUz5mysdM+ZgpHzPlY6Z8zJSPmfIxUz5mysdM+bi5Pzf35+b+3Nyfm/tzc39u7s/N/bm5Pzf35+b+3Nyfm/tzc39u7s/N/YW5vjDXF+b6wlxfmOsLc31hri/M9YW5vjDXF+b6wlxfmvOlOV+a86U5X5rzpTlfmvOlOV+Z/crsV2a/qmK8ZeJjsZnrgBWPdsMXmvwItx21SycR3i8Xpk0uTJtcmDa5MO3JhSnIhSnIhSnIhSnIhel9cmH6PLkw3RX+uXJhy89C7l2bnnFL6HUpyIUpyIUpyIUpyIUpyIXp51z4cXPhQ/OQ9HldCnJhCnJhCnJhCnJhCnJhOqhcmB0bD/HBeYC5cAR4iAEPMeAhBjzEgIcY8PA5F37MXPjQPMBceAp4SAAPCeAhATwkgIcE8HC4XPi7q6siXZeftJyYDzo8ZKpMvcLFzQGyxgGyxgGyxgGyHgfIgANkwAEy4AAZcIDsPg6QPY8DZLtMPpcDZA9v0axnrhqOb8IIz4ADZMABMuAAGXCA7LMDfFwHeGgeesc3YYRnwAEy4AAZcIAMOEA2KAc4OTYe4oPz0Ds/CjNEBhwgAw6QAQfIgANknx3g4zrAQ/PQOz8KM0QGHCADDpABB8iAA2SDmg1RXvHgZvF4Y/F4Y/F4Y/F4j8XjwOJxYPE4sHgcWDx+H4vHn8fi8V3onsvi8Yc3Wd6zABFOWsO0HYZwDiweBxaPA4vHP1u8x7V4h+ahd9Iapu0whHNg8TiweBxYPD4oixceHRDxwYHoXfUGx/1hDsiBx+PA43Hg8fhnj/e4Hu/QPPSueoPj/jAH5MDjceDxOPB4fFAeL/TrIQc3kycakycakycakyd6TJ4AJk8AkyeAyRPA5In7mDzxPCZP7FL3XCZPPLzNirbNiv61iHA2BmbmMIYLYPIEMHliSCbv6Lr06cFx6F2KCCdjYGIOQ7gAHk8AjycG5fGOcBjv0Dz0PsoAF3PAgX2YAwpg8QSweGJQFs+vHt3J4h2ah95HGeBiDjiwD3NAASyeABZPDMriHeMwnmwcnmwcnmwcnuxxeBI4PAkcngQOTwKHJ+/j8OTzODy5C91zOTz58CYr2yYLnyiR/Sts4GwLzMthCJfA4cnPDu9RHd6hceh9vAQusIGTLTAthxFcAocnB+XwjnEU79BA9D6fClfowtUacGAfZoASWDz52eI9rsU7NA+9z6fCFbpwtQYc2IcpoAQWTw7K4h3lKJ5qPJ5qPJ5qPJ7q8XgKeDwFPJ4CHk8Bj6fu4/HU83g8tUvdc3k89fA2q9o2C58ThiulVf8aGjjbAhNzGMPVkDyeX+tnnTzeoXHofWgYLpuGS2jgZAvMy2EIV4PyeEc4indoHnq/dAQ+dgWX4MLVGnBYH6aAalAW7+QIZ2oPDUTvt47A567gGly4XAMO7MMkUA3K4x3jMN6ksXiTxuJNGos36bF4E2DxJsDiTYDFmwCLN7mPxZs8j8Wb7EL3XBZv8vAmO2mb7GTnq2DaJgu22GRnCQ2cbYGJ+bBi+BFbvEPjgL8JposDXhcNV9DAyRaYlw8jgv8shvEODQT+KrkuEPjBqi4QeLEGHNgfVgp41B7v0EDg75LrAoGfrOoCgZdrwKH9YSSBvo/j7X4B1Tq9XYfmy6f++YdNvv7X7Xe6BK+D+p3qKpCl8rQRvIYzRU/1sV3luriFrs3V9kv3i+xHXfhQjBrFzfnRtMhnm3X6Jl6l6eKbPK5/abz6zXBRfeKcuGlJgJb1v8Gvg1bUXwfdXbYv2dnR9sHfEBd5KTzhfcrf+WMMzr9L8Xh8to/yk4mqKkHvfJQ/vknj99P8NqjkdG26Z7Ddfpu/DPKr4M0Pm0gf6NZyzyzN1unHbfqzm70A+okKkp7AFDrWztJwhvLTPWe0p27EsW6Wr8oYTN1YT92oY90sD4EOpm68p27MsW6Whx8GUzfRUzfuWDfLqr9nqtud31p3HuIuYpv4HzISho6lN8dFi2xe937FOl2WbwfFMi27g7DjIpf6ctoTguJEm9tslkWrT66ZABbkYkcQ9vMW5HJHEP7zFuT3O4KIn7cgX+4IIn/egvxhRxD18xbkqx1BJscuyCudfhZ6RzVUUW5fp/l1Ol1Fv/1/UEsHCDbpO5YcGwAAYEwBAFBLAQIUABQACAgIAAFNdkH3jfjlDAsAAGMLAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAICAgAAU12QUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAUAsAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAABTXZBNuk7lhwbAABgTAEADAAAAAAAAAAAAAAAAACuCwAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAAQnAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" /> | ||
<br /> | |||
== Guidance notes == | |||
<br /> | |||
'''1) Overview''' | |||
<br /> | |||
After learning the concepts of perimeters and areas, it is easy for students to think that figures with larger perimeters would also have larger areas, and vice versa. This applet helps teachers to explore with students the variety of the perimeters of a figure formed by several congruent squares touching side by side. Together with the complementary applet "28888 Variety of Areas with Fixed Perimeter", teachers can clarify with students that a figure with a larger area may have a smaller perimeter, and areas and perimeters are two different concepts. | |||
<br /> | |||
'''2) Learning Objective''' | |||
<br /> | |||
* Recognize figures with same areas could have different perimeters. | |||
* Recognize the strategy of minimizing the perimeters of figures with the same areas. | |||
<br /> | |||
'''3) Teaching Approach''' | |||
<br /> | |||
An inquiry teaching approach is expected. Students are asked to arrange 3 to 9 squares to form different figures and find their possible perimeters. Teacher then guide students to express their strategies of getting the largest and smallest perimeter with a certain number of squares. | |||
<br /> | |||
'''4) Teacher’s Note''' | |||
<br /> | |||
For each number of squares, ask students to record the possible perimeters in the table of the applet; | |||
Guide students to focus on the change of the perimeter when a square is dragged to a new position; | |||
Discuss with students the strategy of minimizing the perimeter, especially for 4 and 9 squares. |
Revision as of 16:37, 27 March 2013
Guidance notes
1) Overview
After learning the concepts of perimeters and areas, it is easy for students to think that figures with larger perimeters would also have larger areas, and vice versa. This applet helps teachers to explore with students the variety of the perimeters of a figure formed by several congruent squares touching side by side. Together with the complementary applet "28888 Variety of Areas with Fixed Perimeter", teachers can clarify with students that a figure with a larger area may have a smaller perimeter, and areas and perimeters are two different concepts.
2) Learning Objective
- Recognize figures with same areas could have different perimeters.
- Recognize the strategy of minimizing the perimeters of figures with the same areas.
3) Teaching Approach
An inquiry teaching approach is expected. Students are asked to arrange 3 to 9 squares to form different figures and find their possible perimeters. Teacher then guide students to express their strategies of getting the largest and smallest perimeter with a certain number of squares.
4) Teacher’s Note
For each number of squares, ask students to record the possible perimeters in the table of the applet; Guide students to focus on the change of the perimeter when a square is dragged to a new position; Discuss with students the strategy of minimizing the perimeter, especially for 4 and 9 squares.