1,060
edits
mNo edit summary |
mNo edit summary |
||
| Line 3: | Line 3: | ||
|tagline=So much to measure, investigate and learn from | |tagline=So much to measure, investigate and learn from | ||
|image=Datalogging-model houses1.jpg | |image=Datalogging-model houses1.jpg | ||
|description= | |description=Today there are hundreds of sensors that can respond to variables such as temperature and light. They enable us to measure force (in our weighing scales); deceleration (in our car air bags) and location (in GPS navigation). Sensors help us to investigate science. If you wonder about the G-forces you might undergo on a theme park ride, or how long it takes to cool a can of Cola, you are in the business of investigating science. Data logging technology now provides students with a tool to operate scientifically, solve problems in technology lessons, or analyse data in maths. All through the 1990's and ever since, UK schools have acquired equipment for measuring using sensors, largely because the National Curriculum (~1990) encouraged teaching science with technology. | ||
Sensors and {{tag|data loggers}} are in part ‘special’ because they can display fast changes and measure with precision. A temperature sensor linked to a live graph can give an insight into how a cup of coffee cools. Analysing the data from that experiment provides learning opportunities - which can often be overlooked. | {{tag|Sensors}} are obviously tools for measuring in science, but why might they be better than regular tools? Are they more accurate; more convenient or less costly? On these points alone, they are little better than a device such as a thermometer. Sensors and {{tag|data loggers}} are in part ‘special’ because they can display fast changes and measure with precision. A temperature sensor linked to a live graph can give an insight into how a cup of coffee cools. Analysing the data from that experiment provides learning opportunities - which can often be overlooked. | ||
Sensors extend the range of things we can measure - from timing a falling mass to recording human pulse changes during a race. Importantly, a live display of a changing measurement can provide students with a tacit understanding of what is happening. Nearby are numerous examples to evaluate what sensors bring to science. | Sensors extend the range of things we can measure - from timing a falling mass to recording human pulse changes during a race. Importantly, a live display of a changing measurement can provide students with a tacit understanding of what is happening. Nearby are numerous examples to evaluate what sensors bring to science. | ||
edits