3,201
edits
SimonKnight (talk | contribs) |
SimonKnight (talk | contribs) No edit summary |
||
| Line 192: | Line 192: | ||
A further crucial point is that, even when they emerge from real world situations, mathematical ideas are not directly accessible to our physical senses, and are thus worked out through a rich diversity of semiotic systems: standard systems of representation such as graphs, tables, figures, symbolic systems, computer representations, etc., but also gestures and discourse in ordinary language. IBME must be sensitive to this semiotic dimension of mathematical learning and to the progressive development of associated competences, without forgetting the evolution in semiotic potential and needs resulting from technological advances. | A further crucial point is that, even when they emerge from real world situations, mathematical ideas are not directly accessible to our physical senses, and are thus worked out through a rich diversity of semiotic systems: standard systems of representation such as graphs, tables, figures, symbolic systems, computer representations, etc., but also gestures and discourse in ordinary language. IBME must be sensitive to this semiotic dimension of mathematical learning and to the progressive development of associated competences, without forgetting the evolution in semiotic potential and needs resulting from technological advances. | ||
Modern technological tools have an impact on inquiry-based education through the immediate access given to a huge diversity of information, whatever the topic. This situation means that the “milieux” with which students can interact in investigative practices are potentially much richer than those usually used for developing investigative practices in mathematics. However, the necessity of selection and the critical use of such information create new demands that iBMe must take into account. | Modern technological tools have an impact on inquiry-based education through the immediate access given to a huge diversity of information, whatever the topic. This situation means that the “milieux” with which students can interact in investigative practices are potentially much richer than those usually used for developing investigative practices in mathematics. However, the necessity of selection and the critical use of such information create new demands that iBMe must take into account.}} | ||
=Inquiry and Science Teaching= | =Inquiry and Science Teaching= | ||