Teaching approaches: Dialogue

From OER in Education

The term dialogue is intended to imply a deeper level of analysis or explanation than that which concerns itself only with the surface meaning of talk as isolated expressions made by individuals. When we talk about dialogue, we are talking about the joint enterprise of talk, as a cumultative (building up over time) activity which is aimed at some purpose or other. In education, the purpose we are most often interested in is learning, in a rather broad sense.

In classrooms such dialogue occurs in a variety of settings, including whole class work and group talk in group work contexts. Research indicates that the most effective sorts of dialogue

  1. Are often not reflected in classroom talk
  2. Are not simply question and response (IRF) exchanges, but are dialogic in nature
  3. Are mutually respectful, and involve exploratory talk which seeks to build a shared understanding between talk partners (what Edwards and Mercer (1987) termed 'Common Knowledge')

Dialogue is a recuring theme on this wiki, and in particular is covered in context in the sections described above.

You should consider throughout the relationship between dialogue, and assessment. You might find some of the items in the table below to be useful prompts


Assessment for learning

Developing strategies that promote classroom dialogue

Use the table below - 'Features of effective dialogue and associated strategies' and our assessment and dialogue resources to provide prompts to help you think about the characteristics of effective dialogue that

  • feature strongly in your teaching and the strategies used to achieve them
  • are absent or might be improved


Features of Effective Dialogue
Teacher Strategies Everyone is engaged with the dialogue Teacher talk does not over-dominate the dialogue Pattern of dialogue is 'basketball' rather pingpong Dialogue is reciprocal, that is, children respond to and build on what others have said Children's contributions are well- developed sentences or phrases Children are willing to take risks by sharing partial understanding Children are willing to challenge each other's ideas in a constructive way Children demonstrate higher levels of thinking Children reprocess their thinking as a result of dialogue
Rich questions
Big questions
Higher-order thinking questions
Questions linked to resources or tasks
Peer discussion following a question
Wait time after a teacher question
Wait time after a child's response
Varying length of wait time
No-hands-up questioning
Pausing to survey
Eavesdropping on group dialogue
Cue in children using gestures and
Model prompts and body language to encourage continuation
Acknowledge where children demonstrate effective dialogue
Group Work Strategies


Relevant resources


Astronomy Recreating the Big Bang
Astronomymasterclasstitlepage.png
An introduction to the creation of the Universe.
This presentation offers a tour of the European Organization for Nuclear Research (CERN) and explains why it is worth spending money on one experiment. It then delves into particle physics, looking at sub-atomic particles to offer analogies for what these particles are. The session focuses on whole class(ta) dialogue(ta) and higher order(ta) thinking skills as well as exploring scientific language(ta). This 4th session and the 5th are together the most theoretically complex and they present challenges to young peoples world views. As such they are led as much by their questions(ta) as by the presentation.
Blogs Creating and Using OER to Promote Best Practice
Walesblog.jpg
One school's approach to sharing and promoting best practice using a blog
This lesson idea encourages collaboration(ta) between teachers in order to develop and share practice(i) across a school. Blogs provide excellent opportunities for children and adults to share ideas and work together. They encourage and enable dialogue(ta) between a writer - or group of writers - and an audience, allowing for quick and easy feedback. They enable questions(ta) to be asked and answered quickly. This example shows a blog being used to encourage discussion(ta) to enable curriculum planning(topic) and curriculum development(topic).
Force Force in the early years
Push1.png
Thinking about the language of force
This lesson idea highlights the scientific language(ta) around the topic of force, and through group work(ta) and whole class(ta) dialogue(ta) engages pupils in inquiry(ta) and the scientific method(ta) surrounding force.
Force Building bridges from a piece of A4 paper
Bridges.png
A bridge too far...
This activity supports a number of learning types:
  • small group work(ta) - investigation conducted by small groups reporting back to the class.
  • whole class(ta) dialogue(ta) - discussion of each situation open-ended questions(ta) – why did this happen? what do you think causes this movement?
  • peer assessment(ta) – do peers agree?
  • project work – linked in with the rest of the activities in this OER, topic work in design and technology, literacy, numeracy
  • inquiry(ta)-based learning – initial presentation to the class can be framed as a problem for them to solve; co-enquiry – children working collaboratively
  • arguing and reasoning(ta) – persuading each other about their explanations.
  • exploring ideas – developing understanding of key scientific principles.
Force What floats and what sinks
Glass of water1.png
Is getting in the bath a way to lose weight?
This activity supports a number of learning types:
  • small group work(ta) - investigation conducted by small groups reporting back to the class.
  • whole class(ta) dialogue(ta) - discussion of each situation open-ended questions(ta) – why did this happen? what do you think causes this movement?
  • peer assessment(ta) – do peers agree?
  • project work – linked in with the rest of the activities in this OER, topic work in design and technology, literacy, numeracy.
  • inquiry(ta)-based learning – initial presentation to the class can be framed as a problem for them to solve; co-enquiry – children working collaboratively
  • arguing and reasoning(ta) – persuading each other of their explanations.
  • exploring ideas – developing understanding of key scientific principles.
Force What makes a good paper airplane?
Airplane.png
This activity supports these learning types:
  • small group work(ta) - groups conduct an investigation and report back to the class.
  • whole class(ta) dialogue(ta) - they discuss open-ended questions(ta): why did this happen? what do you think causes this movement?
  • peer assessment(ta) – do peers agree?
  • project work – the activity connects with others in this OER on forces, with literacy and numeracy and with topic work in design and technology.
  • inquiry(ta)-based learning – an initial presentation to the class can be framed as a problem to solve; children work collaboratively (co-enquiry)
  • arguing and reasoning(ta) – children persuade each other about their explanations.
  • exploring ideas – the activity develops understanding of key scientific principles.
Force Which material makes a good parachute?
Parachute11.png
A simple investigation into parachutes and air resistance
This activity supports a number of learning types:
  • small group work(ta) - investigation conducted by small groups reporting back to the class.
  • whole class(ta) dialogue(ta) - discussion of each situation open-ended questions(ta) – why did this happen? what do you think causes this movement?
  • peer assessment(ta) – do peers agree?
  • project work – linked in with the rest of the activities in this OER, topic work in design and technology, literacy, numeracy
  • inquiry(ta)-based learning – initial presentation to the class can be framed as a problem for them to solve; co-enquiry – children working collaboratively
  • arguing and reasoning(ta) – persuading each other about their explanations.
  • exploring ideas – developing understanding of key scientific principles.
Maps Restless Earth
Ruffledmap.png
How would you respond? Using maps to model disaster support and recover exercises.
This is a free workshop offered by the British Cartographic Society (BCS). Students are assigned roles for group work(ta) tasks to represent various disaster recovery agencies. Learning and teaching focuses around small group work, co-inquiry(ta), exploring ideas alongside negotiation, enquiry-based learning as well as a final whole class(ta) dialogue(ta). The overall aim of the workshop is for each group to produce a map suitable to meet the needs of the various disaster recovery agencies.

BCS organise and supervise the event on the day. They run the workshops throughout the year at a variety of locations. Schools can host their own event or attend an organised one elsewhere. The only proviso is that BCS have access to a large hall with Internet available.

If you would like to host or attend a Restless Earth workshop please contact the British Cartographic Society via the following link: http://www.cartography.org.uk/default.asp?contentID=982

Sampling Sampling techniques to assess population size
Samplingtechniques1.jpg
This lesson offers students an opportunity to use their existing knowledge to analyse a ‘real scientific publication’ and its language(ta) and link this to scientific method(ta).
  • They use study skills(topic) to skim read, make sense of complex language, and use visualisation(ta) to select relevant information
  • They engage in collaborative(tool) group work(ta) using reasoning(ta) and skills in peer assessment(ta)
  • They engage in dialogue(ta) and questioning(ta) to explore ideas together
  • They also think about how to present information using ICT(i) tools)
Science Primary Science Investigation
OCLAFlask.png
What is involved in 'doing a science investigation'? And what is there to assess?
This resource describes the process of doing an investigation for inquiry(ta)-based learning. Teachers could share practice(i) and lesson planning(ta) ideas using the list of pupil skills (e.g. observing). It also lists learning goals for investigation skills (e.g. observing, predicting, problem solving) and ideas for exploring different types of practical work(ta) in science.

It could be used for discussion(ta) or brainstorming on how to apply these skills to different content areas. The resource emphasises engaging pupils in the scientific method(ta) - using higher order(ta) thinking skills, group work(ta) and dialogue(ta) to facilitate knowledge building(ta)/reasoning(ta).

Using images Organising images for a narrative
Snail2201.jpg
Write an essay without words
The lesson encourages students to think about how to portray their knowledge through narrative(ta) - which may engage some students who would usually be less interested. The lesson encourages students to think about how to capture valuable information and ensure that key elements are highlighted while not 'overloading' the viewer with data. The lesson can be tailored to any age group - for younger pupils the task could be to take before and after photos and label them. More advanced pupils might explore time-lapse photography. Pupils should be encouraged to think about how this relates to the scientific method(ta) The task is interactive and could be conducted as a group work(ta) activity or as an element of an inquiry-based learning project. It could also lend itself to whole class(ta) dialogue(ta) and the use of ICT(i) including 'clicker' response systems for assessment(ta) and questioning(ta).