Teaching approaches: Questioning

From OER in Education

{{#show: Teaching Approaches|?title | link=none}} {{#ask: PageGroup::Teaching Approaches |sort=PageGroupWeight_Teaching Approaches |format=template |template=PageGroupShow/template |link=none |limit=50}}
[[{{#ask: PageGroup::Teaching Approaches |sort= PageGroupWeight_Teaching Approaches |link=none |limit=100}}|<<<]] [[{{#ask: PageGroup::Teaching Approaches |sort= PageGroupWeight_Teaching Approaches |link=none |limit=100}}|>>>]]

1 Introduction

The interaction between teacher and learners is the most important feature of the classroom. Whether helping learners to acquire basic skills or a better understanding to solve problems, or to engage in higher-order thinking such as evaluation, questions are crucial. Of course, questions may be asked by pupils as well as teachers: they are essential tools for both teaching and learning.

For teachers, questioning is a key skill that anyone can learn to use well. Similarly, ways of helping pupils develop their own ability to raise and formulate questions can also be learned. Raising questions and knowing the right question to ask is an important learning skill that pupils need to be taught.

Research into questioning has given some clear pointers as to what works. These can provide the basis of improving classroom practice. A very common problem identified by the research is that pupils are frequently not provided with enough ‘wait time’ to consider an answer; another is that teachers tend to ask too many of the same type of questions. (Adapted from Types Of Question, section Intro).

2 Why Question?

The purposes of questioning

Teachers ask questions for a number of reasons, the most common of which are

  • to interest, engage and challenge pupils;
  • to check on prior knowledge and understanding;
  • to stimulate recall, mobilising existing knowledge and experience in order to create new understanding and meaning;
  • to focus pupils’ thinking on key concepts and issues;
  • to help pupils to extend their thinking from the concrete and factual to the analytical and evaluative;
  • to lead pupils through a planned sequence which progressively establishes key understandings;
  • to promote reasoning, problem solving, evaluation and the formulation of hypotheses;
  • to promote pupils’ thinking about the way they have learned.

The kind of question asked will depend on the reason for asking it. Questions are often referred to as ‘open’ or ‘closed’.

Closed questions, which have one clear answer, are useful to check understanding during explanations and in recap sessions. If you want to check recall, then you are likely to ask a fairly closed question, for example ‘What is the grid reference for Great Malvern?’ or ‘What do we call this type of text?’

On the other hand, if you want to help pupils develop higher-order thinking skills, you will need to ask more open questions that allow pupils to give a variety of acceptable responses. During class discussions and debriefings, it is useful to ask open questions, for example ‘Which of these four sources were most useful in helping with this enquiry?’, ‘Given all the conflicting arguments, where would you build the new superstore?’, ‘What do you think might affect the size of the current in this circuit?’

Questioning is sometimes used to bring a pupil’s attention back to the task in hand, for example ‘What do you think about that, Peter?’ or ‘Do you agree?’ (Adapted from Types Of Question, section Why).

2.1 A Common Classroom Sequence

A striking insight provided by classroom research is that much talk between teachers and their pupils has the following pattern: a teacher's question, a pupil's response, and then an evaluative comment by the teacher. This is described as an Initiation-Response-Feedback exchange, or IRF. Here's an example

I Teacher - What's the capital city of Argentina?
R Pupil - Buenos Aires
F Teacher - Yes, well done

This pattern was first pointed out in the 1970s by the British researchers Sinclair and Coulthard. Their original research was reported in

Sinclair, J. and Coulthard, M. (1975) Towards an Analysis of Discourse: the English used by Teachers and Pupils. London: Oxford University Press.

Sinclair and Coulthard's research has been the basis for extended debates about whether or not teachers should ask so many questions to which they already know the answer; and further debate about the range of uses and purposes of IRF in working classrooms. Despite all this, it seems that many teachers (even those who have qualified in recent decades) have not heard of it. Is this because their training did not include any examination of the structures of classroom talk – or because even if it did, the practical value of such an examination was not made clear?

A teacher's professional development (and, indeed, the development of members of any profession) should involve the gaining of critical insights into professional practice – to learn to see behind the ordinary, the taken for granted, and to question the effectiveness of what is normally done. Recognizing the inherent structure of teacher-pupil talk is a valuable step in that direction. Student teachers need to see how they almost inevitably converge on other teachers' style and generate the conventional patterns of classroom talk. By noting this, they can begin to consider what effects this has on pupil participation in class. There is nothing wrong with the use of IRFs by teachers, but question-and-answer routines can be used both productively and unproductively. By understanding and questioning what generally happens, students can begin to construct the kind of dialogues that they can feel confident have most educational value. (Adapted from The Importance of Speaking and Listening, section IRF).

3 Summary of research

Effective questioning Research evidence suggests that effective teachers use a greater number of open questions than less effective teachers. The mix of open and closed questions will, of course, depend on what is being taught and the objectives of the lesson. However, teachers who ask no open questions in a lesson may be providing insufficient cognitive challenges for pupils.

Questioning is one of the most extensively researched areas of teaching and learning. This is because of its central importance in the teaching and learning process. The research falls into three broad categories

  • What is effective questioning?
  • How do questions engage pupils and promote responses?
  • How do questions develop pupils’ cognitive abilities?

What is effective questioning?

Questioning is effective when it allows pupils to engage with the learning process by actively composing responses. Research (Borich 1996; Muijs and Reynolds 2001; Morgan and Saxton 1994; Wragg and Brown 2001) suggests that lessons where questioning is effective are likely to have the following characteristics

  • Questions are planned and closely linked to the objectives of the lesson.
  • The learning of basic skills is enhanced by frequent questions following the exposition of new content that has been broken down into small steps. Each step should be followed by guided practice that provides opportunities for pupils to consolidate what they have learned and that allows teachers to check understanding.
  • Closed questions are used to check factual understanding and recall.
  • Open questions predominate.
  • Sequences of questions are planned so that the cognitive level increases as the questions go on. This ensures that pupils are led to answer questions which demand increasingly higher-order thinking skills but are supported on the way by questions which require less sophisticated thinking skills.
  • Pupils have opportunities to ask their own questions and seek their own answers. They are encouraged to provide feedback to each other.
  • The classroom climate is one where pupils feel secure enough to take risks, be tentative and make mistakes.

The research emphasises the importance of using open, higher-level questions to develop pupils’ higher-order thinking skills. Clearly there needs to be a balance between open and closed questions, depending on the topic and objectives for the lesson. A closed question, such as ‘What is the next number in the sequence?’, can be extended by a follow-up question, such as ‘How did you work that out?’

Overall, the research shows that effective teachers use a greater number of higher- order questions and open questions than less effective teachers. However, the research also demonstrates that most of the questions asked by both effective and less effective teachers are lower order and closed. It is estimated that 70–80 per cent of all learning-focused questions require a simple factual response, whereas only 20–30 per cent lead pupils to explain, clarify, expand, generalise or infer. In other words, only a minority of questions demand that pupils use higher-order thinking skills.

How do questions engage pupils and promote responses?

It doesn’t matter how good and well structured your questions are if your pupils do not respond. This can be a problem with shy pupils or older pupils who are not used to highly interactive teaching. It can also be a problem with pupils who are not very interested in school or engaged with learning. The research identifies a number of strategies which are helpful in encouraging pupil response. (See Borich 1996; Muijs and Reynolds 2001; Morgan and Saxton 1994; Wragg and Brown 2001; Rowe 1986; Black and Harrison 2001; Black et al. 2002.)

Pupil response is enhanced where

  • there is a classroom climate in which pupils feel safe and know they will not be criticised or ridiculed if they give a wrong answer;
  • prompts are provided to give pupils confidence to try an answer;
  • there is a ‘no-hands’ approach to answering, where you choose the respondent rather than have them volunteer;
  • ‘wait time’ is provided before an answer is required. The research suggests that 3 seconds is about right for most questions, with the proviso that more complex questions may need a longer wait time. Research shows that the average wait time in classrooms is about 1 second (Rowe 1986; Borich 1996).

How do questions develop pupils’ cognitive abilities?

Lower-level questions usually demand factual, descriptive answers that are relatively easy to give. Higher-level questions require more sophisticated thinking from pupils; they are more complex and more difficult to answer. Higher-level questions are central to pupils’ cognitive development, and research evidence suggests that pupils’ levels of achievement can be increased by regular access to higher-order thinking. (See Borich 1996; Muijs and Reynolds 2001; Morgan and Saxton 1994; Wragg and Brown 2001; Black and Harrison 2001.)

When you are planning higher-level questions, you will find it useful to use Bloom’s taxonomy of educational objectives (Bloom and Krathwohl 1956) to help structure questions which will require higher-level thinking. Bloom’s taxonomy is a classification of levels of intellectual behaviour important in learning. The taxonomy classifies cognitive learning into six levels of complexity and abstraction

  1. Knowledge – pupils should: describe; identify; recall.
  2. Comprehension – pupils should: translate; review; report; restate.
  3. Application – pupils should: interpret; predict; show how; solve; try in a new context.
  4. Analysis – pupils should: explain; infer; analyse; question; test; criticise.
  5. Synthesis – pupils should: design; create; arrange; organise; construct.
  6. Evaluation – pupils should: assess; compare and contrast; appraise; argue; select.

On this scale, knowledge is the lowest-order thinking skill and evaluation is the highest. It is worth pointing out that, in most cases, pupils will need to be able to analyse, synthesise and evaluate if they are to attain level 5 and above in the National Curriculum and Grade C and above at GCSE.

Bloom researched thousands of questions routinely asked by teachers and categorised them. His research, and that of others, suggests that most learning- focused questions asked in classrooms fall into the first two categories, with few questions falling into the other categories which relate to higher-order thinking skills. (Adapted from Questioning Research Summary, section Body).

4 Practical Advice

The practice of questioning

Questioning is an area characterised by a good deal of instinctive practice. The first task will help you reflect on your use of questioning.

Task 1 Questioning: a self-review 20 minutes

For one lesson you teach, write down, as far as possible, all questions that you ask. To help capture them, you could make an audio recording of yourself or ask another teacher to observe you. (You could do the same for this colleague in return.)

Now analyse the questions you have asked, using a grid like the one below. Refer to the list of the purposes of questioning above to help you with the fourth column.

Question posed Open Closed Evaluation of pupils’ responses(impact on learning)
What do we call the process green plants use to make food? _______
Helped all pupils remember a key word
Explain the differences between the processes of photosynthesis and respiration
_______ Helped all pupils to process knowledge

(Adapted from Types Of Question, section How).

5 Relevant resources

{{#ask: final::yes |format=template |introtemplate=ResourceTable/Intro |template=ResourceTable/Row |outrotemplate=ResourceTable/Outro |link=none |limit=50 |sort=maintopic |searchlabel=Click here to view further results. }}